
ТСПА

ТСПА-К

термопреобразователь сопротивления

комплект термопреобразователей сопротивления

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ АРВС.746967.061.000 РЭ

ВВЕДЕНИЕ

Настоящее руководство по эксплуатации предназначено для ознакомления с принципом работы, устройством, конструкцией, порядком монтажа и правилами эксплуатации термопреобразователей сопротивлений ТСПА, далее – термопреобразователи или ТС.

Перед началом эксплуатации термопреобразователя необходимо внимательно ознакомиться с данным руководством и паспортом.

Изготовитель оставляет за собой право вносить в конструкцию термопреобразователей изменения непринципиального характера без отражения их в руководстве.

ТСПА и ТСПА-К зарегистрированы в Государственном реестре средств измерений Республики Беларусь и соответствуют требованиям СТБ EN 60751 и ГОСТ 6651. Также ТСПА зарегистрированы в Федеральном информационном фонде по обеспечению единства измерений Российской Федерации, Реестре государственной системы обеспечения единства измерений Республики Казахстан, Реестре государственной системы обеспечения единства измерений Республики Узбекистан, и имеют соответствующие сертификаты об утверждении типа средств измерений. Номера реестров приведены в таблице 1.

Таблица 1.

Регистрационный номер в Государственном реестре средств измерений				
		ТСПА		
Республика	Российская	Республика	Республика	
Беларусь	Федерация	Казахстан	Узбекистан	
РБ 03 10 8955 22	№ 86749-22	NºKZ.02.03.00995-2022	Nº02-2.0208:2022	
ТСПА-К				
РБ 03 10 8956 22	№ 86750-22	NºKZ.02.03.00996-2022	Nº02-2.0209:2022	

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Термопреобразователи предназначены для измерения температуры методом непосредственного погружения в среду, не агрессивную по отношению к материалу оболочки чувствительного элемента.

Из термопреобразователей типа ТСПА могут быть подобраны комплекты (пары) термопреобразователей ТСПА-К (далее – комплекты ТСПА-К). Комплекты ТСПА-К предназначены для измерения разности температур воздуха и жидких сред в составе приборов учета тепловой энергии и информационно-измерительных систем учета, а также в составе автоматизированных систем в различных отраслях народного хозяйства.

Область применения: энергетика, химическая, пищевая и другие отрасли промышленности, а также в составе теплосчетчиков и информационно-измерительных систем учета количества теплоты.

2 ОПИСАНИЕ

Термопреобразователь состоит из чувствительного измерительного элемента, реагирующего на температуру, внутренних токопроводящих проводов, помещенных в защитную трубку из коррозионностойкого материала, и внешних вводов для соединения с электрическими измерительными устройствами.

Термопреобразователи выпускаются в двух исполнениях: PL и DS по CTБ EH 1434-2. Внешний вид, конструктивное исполнение, габаритные, установочные размеры и масса термопреобразователей приведены в ПРИЛОЖЕНИИ Б.

Соединение внутренних проводников термопреобразователя с чувствительным измерительным элементом соответствует схеме условного обозначения 4 по СТБ ЕН 60751 и ГОСТ 6651-94 (см. рис. В2, ПРИЛОЖЕНИЕ В).

2.1 Технические характеристики

ТСПА обеспечивает измерение температуры теплоносителя в одном из следующих диапазонов (указывается при заказе): от минус 50 до плюс $160~^{\circ}$ С или от 0 до $160~^{\circ}$ С, ТСПА-К только от 0 до $160~^{\circ}$ С.

Комплект термопреобразователей обеспечивает измерение разности температур двух сред в диапазоне от 2 до 150 °C или от 3 до 150 °C.

Монтажная часть защитной арматуры герметична. Термопреобразователь выдерживает воздействие избыточного давления величиной 2,5 МПа на защитную арматуру.

Время термической реакции (время, необходимое для реагирования термопреобразователя на ступенчатое изменение температуры, соответствующее 50 % ступенчатого изменения сопротивления) не должно превышать:

исполнение DS в жидкой среде	8 с
исполнение PL в жидкой среде	15 c
исполнение DS в воздушной среде	30 c
исполнение PL в воздушной среде	60 с

Повышение сопротивления термопреобразователей, обусловленное самонагревом, не должно превышать 20 % допуска.

Максимальное значение падения напряжения между выводами термопреобразователя при изменении глубины погружения от минимальной до максимальной (величина термоэлектрического эффекта) не превышает 20 мкВ.

Изменение сопротивления термопреобразователя при 0 °C (Ro) при воздействии на термопреобразователь предельных значений температур в

измеряемой среде в течение 250 ч не превышает эквивалент, равный 0.15 °C для класса A и 0.3 °C для класса B. Допустимые значения изменения сопротивления Ro приведены в таблице 2.1.

Изменение сопротивления термопреобразователя при 0 °С (Ro) в результате 10-ти кратного воздействия смены температур от верхнего к нижнему пределу измерения не превышает эквивалент, равный 0.15 °С для класса A и 0.3 °С для класса B (см. таблицу 2.1).

Таблица 2.1

Класс допуска	Номинальное значение R _o , Ом	Допускаемые отклонения R₀ о номинального значения, Ом	
^	100	±0,059	
А	500	±0,293	
D	100	±0,117	
D	500	±0,586	

По устойчивости к внешним вибрационным воздействиям ТС соответствуют группе N2 по ГОСТ 12997.

По виду климатического исполнения ТС соответствуют группе ДЗ по ГОСТ 12997.

Термопреобразователь в транспортной таре выдерживает при транспортировании в закрытом транспорте (железнодорожные вагоны, закрытые автомашины, трюмы судов):

- воздействие температуры от минус 50 °C до плюс 55 °C;
- воздействие относительной влажности (95±3)% при температуре окружающего воздуха до 35 °C;
- вибрацию по группе N2 ГОСТ 12997;
- удары со значением ударного ускорения (пикового) 98 м/сек² и длительностью ударного импульса 16 мс, число ударов 1000±10 для каждого направления.

Термопреобразователь соответствует степени защиты от воздействия воды и пыли IP65, категория 2 по ГОСТ 14254.

Средняя наработка на отказ термопреобразователя не менее 100000 ч при доверительной вероятности 0,98. Показатели безотказности устанавливаются для следующих условий:

- температура верхнего предела рабочего диапазона 160(100) °C;
- вибрация в диапазоне частот 10-55 Гц с амплитудой смещения 0,15 мм;
- относительная влажность окружающего воздуха 95 % при температуре 35 °C.

Электрическая изоляция термопреобразователя выдерживает в течении одной минуты синусоидальное переменное напряжение 250 В частотой 50 Гц.

Электрическое сопротивление изоляции между цепью термометрического чувствительного элемента и защитной арматурой термопреобразователя не менее, МОм:

- 100 при температуре (25±10) °С и относительной влажности не более 80%;
- 0,5 при температуре 35 °C и относительной влажности 98 %;
- 10 при максимальном измеряемом значении температуры.

Средний срок службы термопреобразователя не менее 12 лет.

2.2 Рабочие условия

Температура окружающей среды от -50 °C до +55 °C.

Относительная влажность воздуха – до 95% при температуре до 35 °C и более низких температурах без конденсации влаги.

Максимальное рабочее давление в трубопроводе 2,5 МПа $(16,0 \text{ кгс/см}^2)$.

Минимальная глубина погружения, мм:

- исполнение DS 25;
- исполнение PL 40.

Значения измерительного тока через термопреобразователь с различными НСХ не должны выходить за пределы, указанные в таблице 2.2.

Таблица 2.2

Номинальное значение Ro, Ом	Значение измерительного тока, мА		
100 (Pt100)	От 0,3 до 1,0		
500 (Pt500)	От 0,1 до 0,7		

2.3 Метрологические характеристики

Термопреобразователи соответствуют классу допуска A или B по CTБ EH 60751 и ГОСТ 6651-94.

Пределы допускаемого отклонения сопротивления термопреобразователей от номинальной статической характеристики приведены в таблице 2.3.

Таблица 2.3

Класс допуска	Предел допустимого отклонения от номинальной статической характеристики, °C		
Α	0,15+0,002•ltl*		
В	0,30+0,005•ltl*		
* Itl – абсолютное значение температуры, °С, без учета знака			

Отклонение сопротивления термопреобразователя при 0 °С (Ro) от номинального значения (100, 500 Ом) не превышает 0,05 % для приборов класса A и 0,1 % для приборов класса B.

Отношение сопротивления при 100 °C к сопротивлению термопреобразователя при 0 °C (W100) должно соответствовать значениям, приведенным в таблице 2.4.

Таблица 2.4

Класс допуска	Номинальное значение W ₁₀₀	Наименьшее допускаемое значение W ₁₀₀		
Α	1,3850	1,3845		
B 1,3850		1,3840		
Примечание: Наибольшее значение W₁₀₀ не ограничивается				

Номинальная статическая характеристика преобразования соответствует уравнению:

$$Rt = Wt \cdot Ro \tag{1}$$

где: \mathbf{Rt} – сопротивление термопреобразователя при температуре \mathbf{t} , Ом; \mathbf{Wt} – значение отношения сопротивлений при температуре \mathbf{t} к сопротивлению при температуре 0 °C.

Wt рассчитывают по уравнению:

$$Wt = 1 + A \cdot t + B \cdot t^2 \tag{2}$$

где: $A=3,9083*10^{-3}$ [1/°C], $B=-5,7750\cdot10^{-7}$ [1/°C 2] для W100=1,3850.

Пределы допускаемой относительной погрешности при измерении разности температур Δt , % подобранной парой (комплектом ТСПА-К) термопреобразователей не превышает значений $\pm (0,5+3\cdot \Delta t_{min}/\Delta t)$, где Δt – измеряемая разность температур.

3 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

Источником опасности при монтаже и эксплуатации термопреобразователей являются:

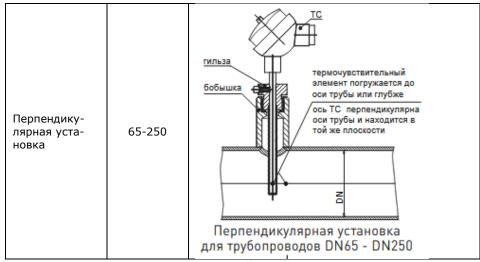
- давление жидкости в трубопроводах (до 2,5 МПа);
- температура жидкости и трубопровода (до 160 °C).

Безопасность эксплуатации обеспечивается прочностью арматуры термопреобразователя и защитных гильз. Специальные требования по безопасности к термопреобразователям не предъявляются.

4 МОНТАЖ

Термопреобразователь (гильза термопреобразователя) должен быть погружен в измеряемую среду на глубину, превышающую минимальную глубину погружения (см. п. 2.2).

Если термопреобразователь используется в составе теплосчетчика, то его монтаж осуществляется в соответствии с требованиями СТБ ЕН 1434.


Монтаж в трубопровод. Требования к месту установки.

Термопреобразователи в трубопроводе могут монтироваться в колено трубопровода (в изгибе) наклонно (угловая установка) и перпендикулярно к оси трубопровода. Примеры установки термопреобразователей на трубопроводе приведены в таблице 4.1.

Термопреобразователь должен устанавливаться на объекте в месте, исключающем попадание жидкости на корпус термопреобразователя (запрещается устанавливать термопреобразователь под запорной арматурой или другими устройствами, из которых может вытекать жидкость).

Таблица 4.1

Тип установки ТС	Диаметр трубопро- вода (DN), мм	Рекомендации по установке	
В изгибе	≤50	ось датчика совпадает с осью трубы Установка в колене для трубопроводов ≼ DN50	
Угловая уста- новка	≤50	термочувствительный элемент погружается до оси трубы или глубже бобышка гильза направление потока	

Монтаж термопреобразователей исполнения PL

В выбранном месте установки термопреобразователя в трубопроводе делается отверстие под защитную гильзу и приваривается бобышка.

Центры отверстий в трубопроводе и в бобышке должны совпадать. При сварке следует обратить внимание на сохранность резьбы бобышки.

Для трубопроводов диаметром менее 50 мм рекомендуется при установке применять расширитель.

В таблице 4.2 приведены типы применяемых бобышек и диаметр расширителя при установке термопреобразователя на трубопроводы различных диаметров. Конструктивное исполнение, габаритные и установочные размеры бобышки и гильзы приведены на рис. Б3, ПРИЛОЖЕНИЕ Б.

Таблица 4.2

Диаметр Трубопро- вода (DN)	Бобышка	Длина погружаемой части (Lпогр), мм	Диаметр расширителя, мм
15	наклонный	85	50
25	наклонный	85	50
32	наклонный	85	50
50	наклонный	85	-
80	прямой	85	-
100	прямой	120	-
150	прямой	120	-
200	прямой	210	-
250	прямой	210	-
300	прямой	210	-

<u>Примечание:</u> при монтаже на трубопровод с диаметром 150 мм и более, необходимо обрезать бобышку таким образом, чтобы термочувствительный элемент находился на оси трубопровода или ближе.

Защитная гильза ввинчивается в бобышку, при этом необходимо уложить в бобышку прокладку. Вся поверхность защитной гильзы должна иметь контакт с жидкостью, температура которой измеряется. Затем в защитную гильзу вставляется термопреобразователь и фиксируется зажимным винтом.

При наклонной установке термопреобразователя, его необходимо устанавливать таким образом, чтобы герметичный ввод был направлен вниз.

После установки в гильзу произвести подсоединение термопреобразователя к измерительному прибору (расположение контактов и схема электрических соединений приведены в ПРИЛОЖЕНИИ В) и зажать гермовводы на корпусе термопреобразователя и прибора для исключения попадания влаги.

Бобышку и участки трубопровода в месте установки термопреобразователя рекомендуется теплоизолировать с помощью теплоизолирующих материалов.

Конструкция термопреобразователя предусматривает возможность его пломбирования, способы пломбирования приведены на рис. 5.1.

Монтаж термопреобразователей исполнения DS

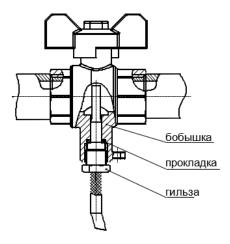


Рис. 4.1

Установить специальный шаровой кран.

Вставить термопреобразователь в бобышку на шаровом кране, при этом необходимо установить прокладку. Зажать фиксирующую гайку (см. рис. 4.1).

Произвести подсоединение термопреобразователя к измерительному прибору (расположение контактов и схема электрических соединений приведены в ПРИЛОЖЕНИИ В) и закрепить соединительный кабель в гермовводе прибора.

Конструкция термопреобразователя предусматривает возможность его пломбирования, способы пломбирования приведены на рис. 5.1.

5 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

Маркировка термопреобразователей соответствует СТБ ЕН 1434-2 и ГОСТ 6651. На каждом термопреобразвателе указаны:

- наименование изготовителя или его торговая марка;
- тип, включая Pt-обозначение, год выпуска и серийный номер;
- пределы диапазона температуры (θmin и θmax);
- пределы разности температур ($\Delta \theta$ min и $\Delta \theta$ max) (только для комплекта ТСПА-К);
- максимальное допускаемое рабочее давление;
- идентификация датчика температуры прямого (символ «Г») и обратного (символ «Х») потоков (только для комплекта ТСПА-К);
- класс допуска;
- схема соединения проводов.

При установке, после выполнения монтажных работ, термопреобразователь может быть опломбирован представителями органов теплонадзора. Рекомендуемые способы пломбирования приведены на рисунке 5.1

исполнение PL

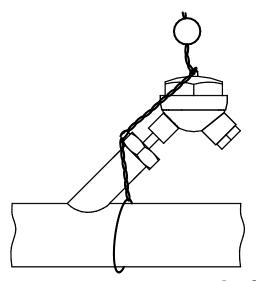
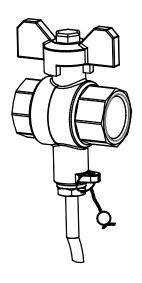



Рис. 5.1

исполнение DS

6 УСЛОВИЯ ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

Хранение термопреобразователей в упаковке должно соответствовать условиям хранения 1 по ГОСТ 15150, при этом относительная влажность воздуха при температуре 25 °C не должна превышать 95 %.

Срок хранения термопреобразователей при минусовых температурах, соответствующих условиях транспортирования, не более одного месяца.

Транспортирование термопреобразователей должно производиться в закрытом транспорте (железнодорожных вагонах, контейнерах, закрытых автомашинах, трюмах судов). Условия транспортирования должны соответствовать условиям хранения 1 по ГОСТ 15150.

Транспортирование осуществляется в соответствии с правилами, действующими на транспорте каждого вида.

7 ПОВЕРКА

Поверка термопреобразователей и комплектов термопреобразователей должна проводиться в организациях, аккредитованных на данный вид деятельности в установленном порядке.

Государственная поверка ТСПА проводится по документу 21ГОСТ 8.461-2009 «Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Методика поверки». Периодичность государственной поверки – 2 года.

Государственная поверка ТСПА-К проводится по документу МРБ МП. 3225-2022 «Система обеспечения единства измерений Республики Беларусь. Комплекты термопреобразователей сопротивления ТСПА-К. Методике поверки».

Периодичность государственной поверки ТСПА-К в Республике Беларусь, Республике Казахстан, Республике Узбекистан – 2 года, в Российской Федерации – 4 года.

ПРИЛОЖЕНИЕ А Карта заказа термопреобразователя

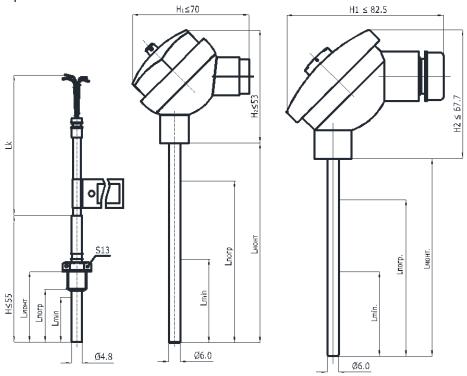
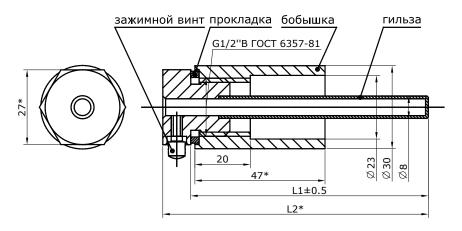
Карта заказа №	термопреобразователя	
Заказчик:		
	(наименование предприятия, адрес, телефон)	
	TCNA /X/ /XXXX/ /X/ /XXXX/ /X/ (X-XXX)	/XXX/
	1 посредством резьбового соединения 2 посредством клеммного соединения 3	
Условное обозначение НСХ	Pt100 Pt500	
Класс допуска по ГОСТ 6651	A B 27,5	
Глубина погружения, мм	85 120 210	
Схема внутренних соединений по	OFFICE T 6651 4 50 ÷ 160	
Диапазон измерений температур,	0 ÷ 160	150 300
Длина кабеля, см (только для исг		500
Количество, шт		
Дата заказа:		
Должность и Ф.И.О. за	эказчика	
Подпись:		
Ф.И.О. принявшего за	ıka3	

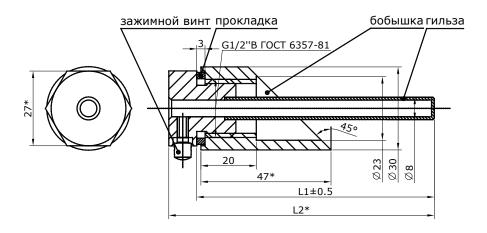
ПРИЛОЖЕНИЕ В Карта заказа комплекта термопреобразователей

Карта заказа № комплекта	а термопреобразователей
Заказчик:	
(наименовани	ие предприятия, адрес, телефон)
Исполнение DS PL с подключением посредством резьбового с PL с подключением посредством клеммного со Условное обозначение НСХ	рединения 3 Рt100 Pt500
Класс допуска по ГОСТ 6651	A B 27,5 85
Глубина погружения, мм Схема внутренних соединений по ГОСТ 6651 Диапазон измерений температур, °С Нижний предел разности температур △ θ _{min} , °С Длина кабеля, см (только для исполнения DS)	120 210 4 0 ÷ 160 2 3 300 500
Количество, шт	
Дата заказа:	
Должность и Ф.И.О. заказчика	
Подпись:	
Ф.И.О. принявшего заказ	

ПРИЛОЖЕНИЕ Б Габаритные, установочные и присоединительные размеры

Внешний вид, конструктивное исполнение, размеры и масса термопреобразователей


Рис. Б1 Рис. Б2 Рис. Б3

Таблина Б1

Испол- нение	Рис.	Lmin, мм	L погр, мм	L монт, мм	L к, мм	Масса, не более, кг
					1500±10	0,05
DS	Б1	25	27,5	37	3000±10	0,09
					5000±10	0,22
	Б.2 (с резь-		85±2	105±2	-	0,08
	бовым со-		120±2	140±2	-	0,08
PL	единением) Б.3 (с за- жимной клеммой)	40	210±2	230±2	1	0,10

Конструктивное исполнение, габаритные и установочные размеры гильзы и бобышки

* - размеры для справок

Обозначение	L1,мм	L2 (для справок), мм
APBC.746967.061.000	85	95
-01	120	130
-02	210	220

Рис. Б4

ПРИЛОЖЕНИЕ В Схема электрических подключений термопреобразователей

Расположение контактов термопреобразователей

Рис. В.1

Схемы внутренних электрических соединений термопреобразователей

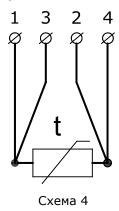


Рис. В2