
PCM-05.05CM

РАСХОДОМЕР-СЧЕТЧИК ЭЛЕКТРОМАГНИТНЫЙ

ПАСПОРТ APBC 746967.025.500М ПС

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	. 4
1 НАЗНАЧЕНИЕ	. 5
2 ТЕХНИЧЕСКИЕ ДАННЫЕ	6
2.1 Технические характеристики	6
2.2 Условия эксплуатации	9
2.3 Метрологические характеристики	9
2.4 Габаритные размеры и масса	. 10
3 КОМПЛЕКТНОСТЬ	. 11
3 КОМПЛЕКТНОСТЬ4 ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО РАСХОДОМЕРА	. 12
4.1 Принцип действия	. 12
4.2 Конструкция расходомера	. 13
5 МАРКИРОВКА И ПЛОМБИРОВАНИЕ	. 14
6 ВЫБОР ТИПОРАЗМЕРА РАСХОДОМЕРА	. 16
7 МЕРЫ БЕЗОПАСНОСТИ	. 16
8 МОНТАЖ И ПОДГОТОВКА К РАБОТЕ	. 17
8.1 Общие требования	
8.2 Требования к месту установки расходомера (ППР)	
8.3 Монтаж ППР	
8.4 Монтаж электрических цепей	. 23
8.5 Демонтаж	
8.6 Подготовка к работе	
8.7 Выбор интерфейса обмена	. 26
8.8 Установка скорости обмена	
8.9 Установка вида выходного сигнала	. 27
8.10 Конфигурация каскадов выходного сигнала и сигнала признака	
реверса	. 27
8.11 Установка контроля обрывов (коротких замыканий) линии выходного	
сигнала и линии сигнала признака реверса	
8.12 Установка сетевого адреса расходомера	. 28
8.13 Установка контроля обрывов и коротких замыканий в цепи	
возбуждения ППР	. 29
8.14 Сводная таблица всех параметров, устанавливаемых при помощи	
перемычек на плате расходомера	. 29
9 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	
10 ΠΟΒΕΡΚΑ	
11 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ	
12 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	. 32
13 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ	
14 ГАРАНТИИ ИЗГОТОВИТЕЛЯ	
15 СВЕДЕНИЯ О РЕКЛАМАЦИЯХ	
ПРИЛОЖЕНИЕ А Спецификация заказа расходомера РСМ-05.05СМ	
ПРИЛОЖЕНИЕ Б Габаритные и установочные размеры	
ПРИЛОЖЕНИЕ В Требования к прямолинейным участкам при установке ППР	
ПРИЛОЖЕНИЕ Г Карта заказа расходомера	. 43

ВВЕДЕНИЕ

Настоящий паспорт распространяется на расходомер-счетчик электромагнитный РСМ-05.05СМ (далее – расходомер) и предназначен для ознакомления с его устройством, конструкцией, принципом действия, правилами эксплуатации и порядком выполнения монтажных работ.

Перед началом монтажных работ и эксплуатацией прибора внимательно ознакомьтесь с настоящим паспортом.

Монтаж и подготовка к работе расходомера должны производиться в строгом соответствии с разделом паспорта «МОНТАЖ И ПОДГОТОВКА К PAFOTE ».

В паспорте приведено описание всех функциональных возможностей расходомера. Функциональные возможности конкретного прибора определяются картой заказа, заполняемой заказчиком при заказе (см. ПРИ-ЛОЖЕНИЕ Г). Таким образом, некоторые функциональные возможности, описанные в данном паспорте, в Вашем расходомере могут отсутствовать.

Предприятие-изготовитель оставляет за собой право вносить в конструкцию и схему расходомера изменения непринципиального характера без отражения их в паспорте.

В паспорте приняты следующие сокращения:

ППР – первичный преобразователь расхода;

Ду – диаметр условного прохода ППР;

ППМ – преобразователь промежуточный микропроцессорный;

ЭДС – электродвижущая сила;

ПК – IBM совместимый персональный компьютер;

ПО – программное обеспечение

ПРП, ПРПМ – типы первичных преобразователей расхода;

HC – нештатная ситуация (ситуация, обусловленная выходом за установленные пределы расхода жидкости);

ТН – техническая неисправность (отклонение режима работы прибора от заданного, вызванное его неисправностью).

Запрещается:

- на всех этапах работы с расходомером касаться руками электродов, находящихся во внутреннем канале ППР;
- протекание сварочного тока через корпус прибора;
- установка и эксплуатация расходомера в пожароопасных и взрывоопасных зонах всех классов.

Расходомеры-счетчики электромагнитные PCM-05 зарегистрированы в Государственном реестре средств измерений Республики Беларусь под \mathbb{N}° РБ 03 07 10900 24, Государственном реестре средств измерений Российской Федерации под \mathbb{N}° 19714-24, Реестре государственной системы обеспечения единства измерений Республики Казахстан \mathbb{N}° KZ.02.03.02219-2024/17642, Реестре государственной системы обеспечения единства измерений Республики Узбекистан \mathbb{N}° 02-2.0503:2025, и имеют соответствующие сертификаты об утверждении типа средств измерений.

1 НАЗНАЧЕНИЕ

Расходомер предназначен для измерения объемного расхода и объема электропроводных жидкостей, питьевой воды, контроля расхода жидкостей в системах автоматического регулирования объектов промышленного назначения.

Расходомер может использоваться в составе теплосчетчиков для коммерческого учёта количества теплоты и теплоносителя, потребляемой жилыми и общественными зданиями, промышленными предприятиями.

Расходомер РСМ-05.05СМ осуществляет автоматическое измерение:

среднего объёмного расхода, [м³/ч].

Преобразование:

- среднего объёмного расхода в частотный сигнал;
- протекшего объема в импульсный сигнал.

2 ТЕХНИЧЕСКИЕ ДАННЫЕ

2.1 Технические характеристики

2.1.1 Расходомер осуществляет измерение среднего объемного расхода $G [m^3/4]$ или объема $V [m^3]$ при прямом и обратном (реверсивном)* движении жидкости в диапазонах расходов, приведенных в таблице 2.1.

Таблица 2.1

Диаметр условного прохода	Диапазон расходов			
ППР, Ду, мм	G _{min} , м ³ /ч	G _{max} ,M ³ /4		
15	0,01575	6,3		
25	0,04	16,0		
32	0,0625	25,0		
40	0,1	40,0		
50	0,1575	63,0		
80	0,4	160,0		
100	0,625	250,0		
150	1,575	630,0		

Примечание: Под наибольшим и наименьшим расходом (Gmax и Gmin соответственно) подразумевается максимальное и минимальное значение расхода, при котором расходомер обеспечивает свои метрологические характеристики при непрерывной работе.

- 2.1.2 Расходомер осуществляет преобразование либо среднего объёмного расхода в частотный сигнал, либо преобразование протекшего объёма в импульсный сигнал. Выбор вида выходного сигнала осуществляется аппаратно при помощи джамперов на плате коммутации расходомера (см. п. 8.9).
- 2.1.3 Частота, соответствующая максимальному значению расхода в выбранном диапазоне, равна 2000 Гц (по заказу до 10000 Гц). Скважность выходного частотного сигнала равна 2.
- 2.1.4 Длительность импульсного выходного сигнала 50 мс, минимальный период следования импульсов 100 мс.
- 2.1.5 Напряжение на переходе коллектор эмиттер не должно превышать 30 В.
 - 2.1.6 Ток нагрузки не должен превышать 10 mA.
- 2.1.7 В конфигурации выходного каскада (сигнала признака реверса) "напряжение" (см. п. 8.10) уровню логической единицы соответствует величина напряжения от 9 до 14 В, уровню логического нуля от 0 до 1,5 В.
- 2.1.8 Весовой коэффициент (л/имп.) устанавливается на предприятии-изготовителе по заказу потребителя (см. карту заказа, ПРИЛОЖЕНИЕ Г) в соответствии с таблицей 2.2.

по заказу

⁶

Таблица 2.2

Весовые коэффици- енты; К, л/имп	D _y =15	D _y =25	D _y =32	D _y =40	D _y =50	D _y =80	D _y =100	D _y =150
Kmin	0,25	0,5	1	2,5	2,5	5	10	20
Кзав.уст.	1	1	10	10	10	10	100	100
Kmax	200	500	1000	2000	2000	5000	10000	20000

Примечания:

Kmin – минимальный весовой коэффициент

Ктах – максимальный весовой коэффициент

Кзав.уст. – весовые коэффициенты, устанавливаемые на предприятии-изготовителе, если иное не указано в заказе.

- 2.1.9 При измерении реверсивного расхода расходомер выдает сигнал признака реверса в виде замкнутого «сухого контакта» или постоянного напряжения, соответствующего логическому «0».
- 2.1.10 Расходомер индицирует как собственные технические неисправности, так и нештатные состояния системы при помощи двух светодиодов, расположенных на верхней панели ППМ:
 - зеленый светодиод мигает подано питание, расходомер находится в рабочем режиме;
 - красный горит постоянно неисправность цепи возбуждения ППР (см. п. 8.13) или АЦП;
 - красный мигает с частотой ≥5Гц расход больше уставки по максимальному расходу;
 - красный мигает с частотой ≤2Гц расход меньше уставки по минимальному расходу.
- 2.1.11 При возникновении технической неисправности расходомер блокирует частотно-импульсный выход, в этом случае частота выходного сигнала **fвых=0 Гц**.
- 2.1.12 Расходомер осуществляет «отсечку» выходного частотного (импульсного) сигнала, если измеряемый расход ниже программно установленного порога (**Gotc**). На предприятии-изготовителе устанавливается **Gotc=0,001Gmax**. В случае если **G** < **Gotc**, частота выходного сигнала **fвых=0 Гц**.
- 2.1.13 Расходомер имеет выходы последовательных интерфейсов RS-485 и RS-232C (по заказу). Интерфейсы гальванически развязаны. Скорость передачи данных 9600 или 57000 бит/с. Максимальная длина линий связи для RS-485 1200м, для RS-232C 15м.
 - 2.1.14 Потребляемая мощность расходомера не превышает 10 ВА.
- 2.1.15 Степень защиты оболочки расходомера от проникновения пыли и влаги соответствует IP54 (IP 65 по заказу) по ГОСТ 14254.
 - 2.1.16 Расходомер предназначен для непрерывной работы.

- 2.1.17 Среднее время наработки на отказ при эксплуатации расходомера в рабочих условиях с учётом технического обслуживания, регламентируемого паспортом, не менее 80 000 часов.
 - 2.1.18 Средний срок службы расходомеров не менее 15 лет.
- 2.1.19 По заказу расходомер изготавливается в исполнении **с дополнительными функциональными возможностями**. При этом расходомер **дополнительно** обеспечивает:

измерение:

- текущего времени [ч:мин].

вычисление, накопление с нарастающим итогом и регистрацию в архиве:

- V+ объема [м³] жидкости, протекшей за каждый час (сутки) при прямом движении;
- V- объема [м³] жидкости, протекшей за каждый час (сутки) при обратном (реверсивном) движении;
- Времени наработки (время работы прибора без НС и ТН): **Тнар** [ч:мин];
- Время работы при Gusm<Gmin: **Tmin** [ч:мин];
- Время работы при Gизм>Gmax: Tmax[ч:мин];
- Время работы при TH: **Ттех.н** [ч:мин];
- Время работы при НС и ТН: **Тнер** (Tнер = Tmax + Tmin + Tтех.н) [ч:мин];
- Кодов возникающих событий:

Выкл. - выключение прибора из сети;

 \mathbf{G} − расход меньше минимального;

 \mathbf{G}^{\uparrow} – расход больше максимального;

Рев. - реверс;

Евозб. – неисправность цепи возбуждения;

 E_{ALIT} – неисправность АЦП;

Наст. - было изменение настроек;

Оч. - очистка архива;

Сбр. – сброс интеграторов.

Глубина архива регистрируемых параметров:

- часовых данных 1080 (45 суток);
- суточных данных 366 (12 месяцев).

Глубина архива событий – 2000 записей.

Архив данных и архив событий можно считать для просмотра на ПК по интерфейсу RS-485 или RS-232C при помощи программы верхнего уровня (**StatRSM**) для Windows 95/98/Me/2000/XP.

2.2 Условия эксплуатации

- 2.2.1 Температура измеряемой жидкости от 3 до 150 °C.
- 2.2.2 Температура воздуха, окружающего расходомер, от 5 до 50 °C.
- 2.2.3 Относительная влажность окружающего воздуха не должна превышать 95% при 30 °C.
 - 2.2.4 Атмосферное давление от 86,0 до 106,7 кПа.
 - 2.2.5 Питание напряжением переменного тока 230 (36) $^{+10\%}_{-15\%}$ В.
 - 2.2.6 Частота питающей сети (50,0 \pm 1,0) Гц.
- 2.2.7 Напряжённость внешнего магнитного поля не должна превышать 40 А/м с частотой 50 Гц.
- 2.2.8 Диапазон изменения удельной электрической проводимости жидкости от $5\cdot 10^{-4}$ до $5\cdot 10^{-1}$ См/м.
- 2.2.9 В случае если расходомер используется в системе теплоснабжения, теплоноситель должен соответствовать СНиП 2.04.07-86. Если содержание примесей (ферромагнитных включений) превышает норму, то возможно выпадение осадка на футеровке ППР, что в некоторых случаях может привести к снижению точности измерений.
- 2.2.10 Весь объём трубопровода ППР должен быть заполнен измеряемой жидкостью.
- 2.2.11 Расходомер не предназначен для установки и эксплуатации во взрывоопасных и пожароопасных зонах по ПУЭ.
- 2.2.12 Избыточное давление в трубопроводе ППР до 1,6 МПа (по заказу до 2,5 МПа).

2.3 Метрологические характеристики

2.3.1 Пределы допускаемой относительной погрешности при измерении среднего объемного расхода и объема, а также при преобразовании измеренных значений в частотный или импульсный выходные сигналы δ , % приведены в таблице 2.3.

Таблица 2.3

Расход, G, м³/ч	Пределы допускаемой относительной погрешности при измерении среднего объемного расхода и объема, а также при преобразовании измеренных значений в частотный или импульсный выходные сигналы б, %		
$G_{min} \leq G < 0.004G_{max}$	±3,5		
$0.004G_{max} \leq G \leq G_{max}$	$\pm (0.8+0.004G_{max}/G)$		
Примечание: G – измеренное значение объемного расхода жидкости, м3/ч			

2.3.2 Погрешность прибора нормируется по цифровому выходу.

2.4 Габаритные размеры и масса

2.4.1 Масса расходомера в зависимости от диаметра условного прохода ППР и исполнения не превышает значений, приведенных в таблице 2.3.

Таблица 2.3

Диаметр условного	Масса, кг, не более			
прохода ППР Ду, мм	ПРП	ПРПМ		
15	-	5		
25	5,5	5		
32	7,5	5		
40	8	7		
50	8	7		
80	19	8,5		
100	25,5	-		
150	32	-		

2.4.2 Габаритные и установочные размеры приведены в ПРИЛОЖЕ-НИИ Б.

3 КОМПЛЕКТНОСТЬ

Обозначение	Наименование	Коли-	Примеча-
Ооозначение	Паименование	чество	ние
Первичный преобразовател			
APBC.746967.007.100	ПРП – 25		
APBC.746967.015.200	или ПРП -32		
APBC.746967.189.000	или ПРПМ-40		
APBC.746967.007.200	или ПРП –50		
APBC.746967.007.300	или ПРП – 80		
APBC.746967.007.400	или ПРП – 100		
APBC.746967.007.500	или ПРП – 150	1 шт.	
APBC.746967.103.000	или ПРПМ-15		
APBC.746967.101.000	или ПРПМ-25		
APBC.746967.102.000	или ПРПМ-32		
APBC.746967.188.000	или ПРПМ-40		
APBC.746967.100.000	или ПРПМ-50		
APBC.746967.109.000	или ПРПМ-80		
Промежуточный преобразов	ватель микропроцессорный ((ППМ)	
APBC.746967.025.500	ППМ.05	1 шт.	
Комплект монтажных частей			
APBC.746967.035.018÷026	Монтажные фланцы	2 шт.	
APBC. 746967.035.027÷035	Прокладки паронитовые	2 шт.	см. рис. ПБ.3
APBC.746967.035.111÷117	Прямые участки	2 шт.	по заказу
ГОСТ 7798	Болты В.М12х50 или болты В.М16х70	8 шт. 8 шт.	Для ПРП Ду25 Ду32 - Ду80
	или болты В.М20х80 или болты В.М24х90	16 шт. 16 шт.	Ду100 Ду150
ГОСТ 22043	или шпилька M16 x 190 или M16 x 300	4 шт.	Для ПРПМ
ГОСТ 592	Гайки M12 или гайки M16 или гайки M20 или гайки M24	8 шт. 8 шт. 16 шт. 16 шт.	Ду25 Ду32 - Ду80 Ду100 Ду150
ОЮО 480.003ТУ	Вставка плавкая ВПТ19-0.5А 250В	1 шт.	
APBC.746967.035.704	СD-R с ПО	1 шт.	по заказу
АРВС.746967.008- 05.1 Б ПС	Расходомер - счетчик электромагнитный РСМ-05.05С, Паспорт.	1 шт.	
Примечание: * - определя	яется спецификацией заказа	3	

Содержание драгоценных материалов (определено комиссионно) в расходомере PCM-05.05CM составляет: золота - 0,18282724 г; серебра - 0,173018184 г.

4 ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО РАСХОДОМЕРА

4.1 Принцип действия

4.1.1 Принцип действия расходомера основан на явлении электромагнитной индукции (см. рис.4.1).

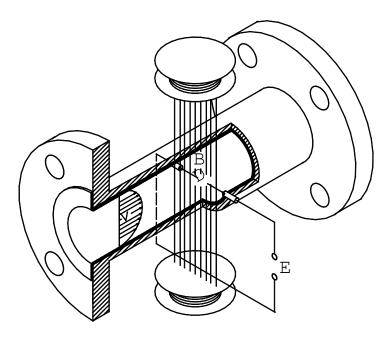


Рис.4.1

При движении электропроводной жидкости в магнитном поле, создаваемом электромагнитной системой ППР, между электродами возникает ЭДС (E):

$$\mathbf{E} = \mathbf{B} \cdot \mathbf{V} \cdot \mathbf{D} \,, \tag{1}$$

- где **В** индукция магнитного поля, создаваемого электромагнитной системой ППР; $\mathcal V$ средняя скорость потока жидкости; **D** расстояние между электродами.
- 4.1.2 Для данного типоразмера расходомера **В** и **D** являются постоянными величинами, поэтому ЭДС **E** зависит только от средней скорости потока жидкости. Наводимая ЭДС передаётся в ППМ, где вычисляется объёмный расход жидкости.

4.2 Конструкция расходомера

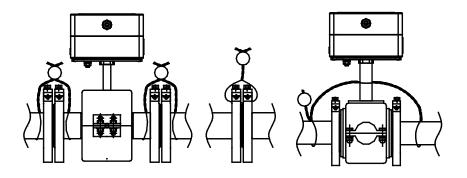
- 4.2.1 В состав расходомера входят ППМ и ППР.
- 4.2.2 ППМ функционально состоит из блоков аналоговой и цифровой обработки сигнала и блока питания.
- 4.2.3 ППР представляет собой отрезок трубопровода из немагнитного материала (см. рис. 4.1), внутренняя поверхность которого футерована диэлектриком (фторопластом). В диаметрально противоположных стенках трубопровода установлены два электрода, контактирующие с измеряемой средой и предназначенные для съёма ЭДС индукции (Е). Благодаря такой конструкции ППР расходомер вносит минимальное гидравлическое сопротивление в поток жидкости. Магнитная система ППР состоит из двух согласно включённых катушек возбуждения и магнитопровода. ЭДС индукции усиливается в блоке аналоговой обработки ППМ, преобразуется в цифровую форму и поступает затем в блок цифровой обработки сигнала. Блок аналоговой обработки сигнала также формирует ток, поступающий на катушки возбуждения магнитной системы ППР.
- 4.2.4 Преобразование объёмного расхода и объёма жидкости в частотный или импульсный сигналы соответственно, а также формирование посылок последовательного интерфейса RS-485 (RS-232C) осуществляется в блоке цифровой обработки сигнала.

5 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

Маркировка составных частей расходомера должна сохраняться в течение всего срока службы расходомера.

На передней панели ППМ нанесены:

- наименование и условное обозначение расходомера;
- напряжение и частота источника питания;
- потребляемая мощность;
- степень защиты оболочки.


На боковой стенке ППМ закреплена паспортная табличка, на которой указано:

- заводской номер расходомера;
- наименование и условное обозначение ППР;
- товарный знак;
- условный проход ППР;
- наибольшее допускаемое давление;
- степень защиты оболочки;
- стрелка, указывающая направление потока жидкости;
- год изготовления.

Маркировка тары производится в соответствии с ГОСТ 14192-96.

При выпуске с предприятия-изготовителя блоки расходомеров имеют пломбы внутри корпуса ППМ в месте крепления электронного блока к корпусу.

При необходимости, после выполнения монтажных работ и задания необходимых установок, расходомер может быть опломбирован. Примеры пломбирования приведены на рис. 5.1.

Пример пломбирования ППМ

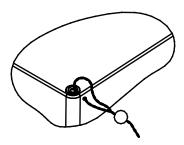


Рис. 5.1

В случае нарушения или несанкционированного снятия пломб предприятия-изготовителя потребителями, предприятие-изготовитель снимает с себя гарантийные обязательства.

6 ВЫБОР ТИПОРАЗМЕРА РАСХОДОМЕРА

Для выбора типоразмера расходомера необходимо знать диапазон расходов жидкости в трубопроводе, в котором будет устанавливаться ППР. Если диапазон расходов в данном трубопроводе укладывается в диапазон расходов нескольких типоразмеров ППР (см. 2.1), то для обеспечения более устойчивой работы и повышения точности измерений следует выбирать расходомер с меньшим значением Ду.

При выборе ППР с меньшим Ду следует учитывать увеличение вносимого гидравлического сопротивления.

7 МЕРЫ БЕЗОПАСНОСТИ

Источником опасности при монтаже и эксплуатации расходомеров являются:

- переменное напряжение сетевого питания до 253 В;
- давление жидкости в трубопроводах до 1,6 МПа (по заказу до 2,5 МПа);
- температура жидкости (трубопровода) до 150 °C.

Безопасность эксплуатации расходомера обеспечивается:

- герметичностью фланцевого соединения ППР с трубопроводом;
- изоляцией электрических цепей расходомера;
- надёжным заземлением расходомера;

При эксплуатации расходомера необходимо соблюдать общие требования безопасности:

- не допускается эксплуатация расходомера со снятой крышкой;
- запрещается использовать расходомер при избыточном давлении в трубопроводе, превышающем 1,6 МПа (по заказу до 2,5 МПа);
- запрещается демонтировать ППР до полного снятия давления в трубопроводе.
- перед проведением работ необходимо с помощью измерительного прибора убедиться в том, что на трубопроводе отсутствует опасное для жизни напряжение переменного или постоянного тока.

Перед включением расходомера в электрическую сеть необходимо заземлить его составные части.

При обнаружении внешних повреждений прибора или сетевой проводки следует отключить расходомер до выяснения причин неисправности специалистом по ремонту.

Запрещается установка и эксплуатация расходомера в пожароопасных и взрывоопасных зонах всех классов.

При установке и монтаже расходомера необходимо соблюдать требования ГОСТ 12.3.003, ГОСТ 12.3.032, ГОСТ 12.3.036, а также Правил пожарной безопасности и техники безопасности.

При эксплуатации необходимо соблюдать «Правила устройства электроустановок» и «Правила техники безопасности при эксплуатации электроустановок» и «Общие правила пожарной безопасности для промышленных предприятий».

Для тушения пожара, при возгорании расходомера, разрешается использовать только углекислотные огнетушители типа ОУ-2, ОУ-5, ОУ-10 и др.

8 МОНТАЖ И ПОДГОТОВКА К РАБОТЕ

Монтаж расходомера должен производиться в строгом соответствии с требованиями к монтажу настоящего паспорта и утвержденным проектом установки персоналом, ознакомленным с эксплуатационной документацией на расходомер.

8.1 Общие требования

8.1.1 Место установки расходомера должно соответствовать условиям, приведенным в разделе 2.2.

8.2 Требования к месту установки расходомера (ППР)

8.2.1 Расходомер может быть установлен на вертикальных, горизонтальных и наклонных участках трубопровода при условии заполнения всего объёма трубопровода ППР жидкостью.

Таким образом, не допускается установка расходомера:

- на самом высоком месте системы;
- на вертикальной трубе со свободным выходом жидкости.
- 8.2.2 Примеры неправильной установки расходомера приведены на рисунке 8.1.

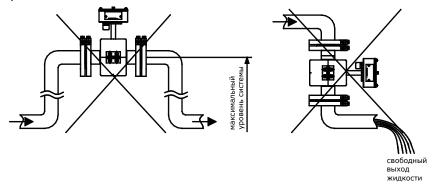


Рис.8.1

8.2.3 В месте установки расходомера в трубопроводе не должен скапливаться воздух. Наиболее подходящее место для монтажа – нижний или восходящий участок трубопровода (см. рис.8.2).

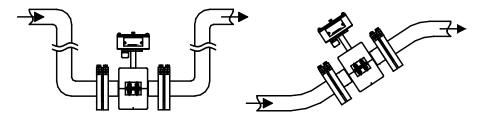


Рис.8.2

8.2.4 При возможном выпадении осадка, расходомер должен устанавливаться вертикально, при этом направление потока должно быть снизу вверх (см. рис.8.3).

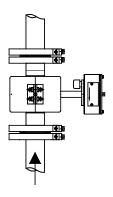


Рис.8.3

- 8.2.5 Выпадение токопроводящего осадка на футеровке трубопровода ППР может привести к снижению точности измерения объёмного расхода жидкости, поэтому не допускается использование расходомера в гидравлических трактах с угольными фильтрами.
- 8.2.6 Расходомер необходимо располагать в той части трубопровода, где пульсации и завихрения минимальные. При установке расходомера необходимо обеспечить прямолинейные участки трубопровода длиной не менее 3 Ду до и 1 Ду после ППР (см. рис. 8.4).
- 8.2.7 Если возможен реверсивный режим работы системы, то при выборе длины прямолинейного участка необходимо учесть влияние гидравлических сопротивлений на участке после ППР.

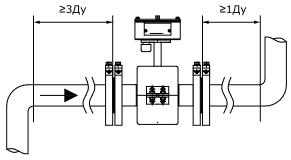


Рис. 8.4

- 8.2.8 Если диаметр ППР не совпадает с внутренним диаметром трубопровода, то необходимо использовать переходные конуса (конфузоры и диффузоры). Между переходными конусами и ППР также необходимо обеспечить прямолинейные участки трубопровода ЗДу до и 1Ду после ППР. На этих участках не должно быть никаких устройств или элементов, вызывающих завихрения потока жидкости. Для избежания существенной потери давления на участке «конфузор-ППР-диффузор» не рекомендуется уменьшать диаметр трубопровода более чем в два раза (уменьшение диаметра в два раза эквивалентно уменьшению площади сечения трубопровода в четыре раза).
- 8.2.9 **Запрещается** устанавливать расходомер под запорной арматурой или другими устройствами, при неисправности которых может вытекать жидкость.
- 8.2.10 Запрещается удалять герметичные вводы ППМ или уплотнительные кольца в них.

8.3 Монтаж ППР

Перед началом работ на трубопроводе следует убедиться, что в выбранном месте установки ППР снято давление жидкости.

Установка ППР должна производиться после завершения всех сварочных, строительных и прочих работ.

Запрещается использовать ППР в качестве монтажного приспособления при приварке ответных фланцев к трубопроводу.

Нарушение указанных ограничений может привести к выходу расходомера из строя. Гарантийные обязательства предприятия-изготовителя при этом аннулируются.

8.3.1 Перед тем, как разрезать трубопровод в месте предполагаемой установки расходомера, необходимо закрепить участки труб, которые могут отклониться от нормального положения после разрезания.

- 8.3.2 При проведении сварочных работ расходомер должен быть защищен от попадания искр и окалины.
- 8.3.3 Если предусматривается использование конфузора и диффузора, то необходимо проверить соответствие установочных размеров конфузора и диффузора реальному диаметру подводящей трубы.
- 8.3.4 В выбранном месте установки расходомера (ППР) вырезать участок трубопровода с учётом габаритной длины расходомера (ППР) и технологических допусков на сварку.
- $8.3.5~{\rm K}$ прямолинейным участкам трубопровода приварить фланцы в соответствии с ГОСТ 12820-80, при этом угол между осью трубопровода и плоскостью фланца должен быть $90\pm1^{\circ}$. Фланцы следует приваривать таким образом, чтобы после установки расходомера (ППР) ось электродов ППР лежала в горизонтальной плоскости (допустимое отклонение от линии горизонта $\pm10^{\circ}$). При монтаже ответных фланцев необходимо приварить болт заземления к верхней части монтируемого фланца (см. рис. 8.5).

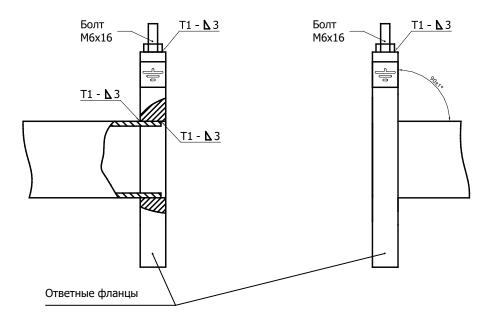
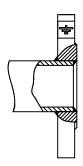



Рис. 8.5

ВНИМАНИЕ! На датчики расхода, монтаж которых выполнен с нарушением требований ГОСТ 12820-80 (соединение труба-фланец), гарантийные обязательства не распространяются (см. Рис. 8.5а).

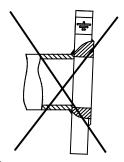


Рис.8.5а

- 8.3.6 Установить ППР между приваренными фланцами, зафиксировав его двумя болтами (шпильками), крепящими ППР к фланцам. ППР следует устанавливать таким образом, чтобы ППМ находился над трубопроводом, а стрелка на корпусе ППМ совпадала с направлением потока жидкости.
- 8.3.7 Точность показаний прибора при направлении потока, противоположном направлению стрелки на корпусе ППР, не гарантируется (кроме случая, когда расходомер обеспечивает измерение реверсивного расхода).
- 8.3.8 Уложить во фланцы паронитовые прокладки, поставляемые в комплекте с расходомером (см. рис. ПБ.4).
- 8.3.9 Допускается использование только паронитовых прокладок с размерами, соответствующими размерам прокладок, поставляемых с расходомером.
 - 8.3.10 Установить оставшиеся болты (шпильки).
- $8.3.11\ {
 m OT}$ Отцентрировать внутреннее сечение ППР с внутренним сечением трубопровода.
- 8.3.12 Во избежание частичного перекрытия внутреннего сечения трубопровода необходимо обратить внимание на центровку паронитовых прокладок относительно трубопровода и ППР. Края прокладок не должны выступать в проточную часть трубопровода.
- 8.3.13 Затяжку болтов (шпилек), крепящих ППР к фланцам на трубопроводе, производить поочерёдно по диаметрально противоположным парам, при этом необходимо избегать применения чрезмерно больших усилий во избежание деформации отбортованной на фланец футеровки ППР.
- 8.3.14 Рекомендуемый момент силы при закручивании гаек в зависимости от исполнения ППР приведен в таблице 8.1.

Таблица 8.1

Диаметр условного прохода первичного преобразователя, мм	15	25	32	40	50	80	100	150
Момент силы закручи- вания гаек, Н∙м	15	20	35	50	50	55	60	100

ВНИМАНИЕ! После того как болты (шпильки), крепящие ППР к фланцам будут затянуты, установленный расходомер запрещается поворачивать вокруг оси трубопровода.

- 8.3.15 После установки расходомера необходимо обеспечить его заземление в соответствии с рис. 8.6. Заземление расходомера следует выполнять в соответствии с требованиями ПУЭ, т.е. путём непосредственного соединения заземляющего проводника с заземлителем, а не с трубопроводом.
- 8.3.16 Допускается вместо заземления выполнять зануление в соответствии с требованиями ПУЭ.
- 8.3.17 Запрещается использование металлорукавов в качестве заземляющих или нулевых защитных проводников.

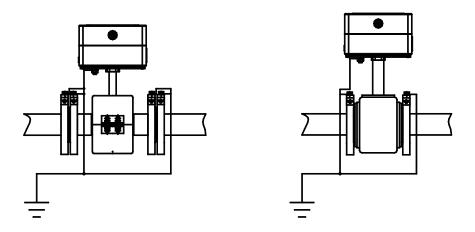
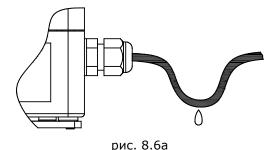



Рис.8.6

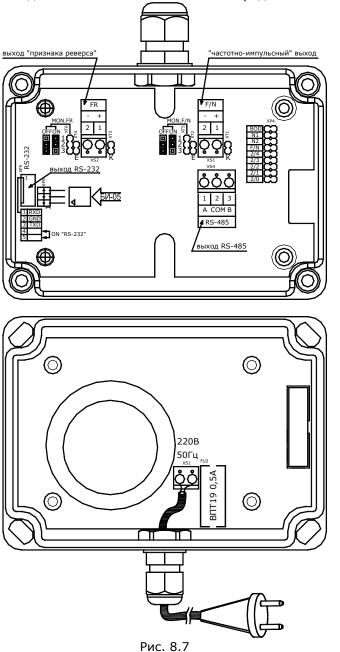
8.4 Монтаж электрических цепей

- 8.4.1 Для проведения монтажа необходимо отвернуть 4 винта на передней панели ППМ и снять переднюю панель. После этого освобождается доступ к разъемам и клеммникам для подсоединения внешних цепей (см. рис. 8.7).
- $8.4.2~\mathrm{B}$ качестве кабеля для подключения к импульсному (частотному) выходу используется двухжильный кабель без экрана, например ШВВП $2\times0,5~\mathrm{mm}^2$. Сопротивление кабеля не должно превышать $100~\mathrm{Om}$. Во избежание дополнительных помех и наводок, а также механических повреждений, кабель рекомендуется прокладывать в стальных заземленных трубах или заземлённых металлорукавах.
- 8.4.3 В неиспользуемые герметичные вводы необходимо установить заглушки, чтобы исключить попадание влаги в корпус ППМ
- 8.4.4 После подключения к ППМ соединительных линий необходимо зажать герметичные вводы.
- 8.4.5 Для предотвращения скапливания конденсата непосредственно перед герметичным вводом и попадания внутрь ППМ влаги рекомендуется сделать небольшой прогиб кабеля (см. рис. 8.6a).

8.4.6 Не допускается крепить кабели к трубопроводам.

8.5 Демонтаж

Демонтаж расходомера должен производиться квалифицированными специалистами в строгом соответствии с данным паспортом.



Перед началом работ на трубопроводе следует убедиться, что в выбранном месте установки ППР снято давление жидкости.

Демонтаж расходомера следует осуществлять в следующем порядке:

- Отключить питание расходомера;
- Перекрыть расход жидкости в месте установки расходомера (ППР) и убедиться в том, что на участке, где установлен ППР, отсутствует давление;
- Отсоединить от расходомера (ППР) заземляющие шины;
- Для демонтажа ППР ослабить гайки болтов (шпилек), крепящих ППР к фланцам на трубопроводе. Убедившись в отсутствии протечек теплоносителя на перекрытом участке, открутить гайки и извлечь болты (шпильки) придерживая при этом ППР. Затем аккуратно извлечь ППР, не повредив фторопластовую футеровку.

Внешний вид ППМ РСМ-05.05СМ со снятой передней панелью

8.6 Подготовка к работе

- 8.6.1 К работе допускаются расходомеры, не имеющие механических повреждений и нарушения пломб и подготовленные к работе в соответствии с требованиями настоящего раздела.
- 8.6.2 Проверить правильность монтажа электрических цепей в соответствии с рис. 8.7.
- 8.6.3 Включить расход жидкости под рабочим давлением. Проверить герметичность соединения ППР с трубопроводом. Течь и просачивание не допускаются.
 - 8.6.4 Подать напряжение питания на ППМ.
- 8.6.5 После выдержки во включенном состоянии в течение 0,5 часа и отсутствии нарушений в работе расходомер считается готовым к эксплуатации.
- 8.6.6 Сданные в эксплуатацию расходомеры работают непрерывно в автоматическом режиме.
- 8.6.7 Для визуального просмотра измеренных параметров информация из расходомера может быть считана по последовательному интерфейсу RS-485 или RS-232C. Для работы по последовательному интерфейсу RS-485 (RS-232C) необходимо снять переднюю панель расходомера, активировать нужный тип интерфейса (RS-485 или RS-232C) и подключить к разъёму RS-485 (RS-232C) кабель для связи с периферийными устройствами: IBM совместимым компьютером, контроллером, индикатором БИ-05 и т.д. (см. рис. 8.7). При работе по интерфейсу RS-485 подключение к компьютеру следует осуществлять через интерфейсный адаптер. Скорость обмена с расходомером может принимать значения 9600 или 57600 бит/сек.

ВНИМАНИЕ! Коммутацию кабелей связи последовательных портов расходомера с СОМ портами ПК следует осуществлять при выключенных расходомере или (и) ПК.

8.7 Выбор интерфейса обмена

Выбор интерфейса обмена осуществляется путём установки/снятия джампера на контакты **4-5 (ON RS-232)** (поле **XP5**, см. рис. 8.7):

```
ON (джампер установлен) – RS-232C; OFF (джампер снят) – RS-485.
```

8.8 Установка скорости обмена

Осуществляется путём установки/снятия джампера **BOD** (поле **XP4**, см. рис. 8.7):

ON (джампер установлен) – 57600; **OFF** (джампер снят) – 9600.

8.9 Установка вида выходного сигнала

Осуществляется путём установки/снятия джампера **F/N** (поле **XP4**, см. рис. 8.7):

ON (джампер установлен) – импульсный выходной сигнал; **OFF** (джампер снят) – частотный выходной сигнал.

8.10 Конфигурация каскадов выходного сигнала и сигнала признака реверса

Выходные каскады аппаратно могут быть выполнены одним из 3 способов (см. рис. 8.8):

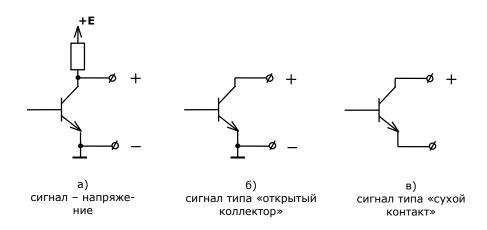


Рис 8.8

8.10.1 Конфигурация выходного каскада выбирается путём установки/снятия джамперов **XT1, XT2** на плате коммутации (см. рис. 8.7, 8.8, таблицу 8.2)

Таблица 8.2

XT1 (K)	XT2 (E)	Состояние выходного каскада	
ON	ON	Выходной сигнал - напряжение	
OFF	OFF	Выходной сигнал типа «сухой контакт»	
OFF	ON	Выходной сигнал типа «открытый коллектор»	
Примечание: при выпуске из производства устанавливается тип вы-			

ходного сигнала - «сухой контакт»

8.10.2 Конфигурация каскада сигнала признака реверса выбирается путём установки/снятия джамперов ХТЗ, ХТ4 на плате коммутации (см. рис. 8.7, 8.8, таблицу 8.3).

Таблица 8.3

XT3 (K)	XT4 (E)	Состояние каскада сигнала признака реверса	
ON	ON	Сигнал признака реверса - напряжение	
OFF	OFF	Сигнал признака реверса типа «сухой контакт»	
OFF	ON	Сигнал признака реверса типа «открытый коллектор»	
Примечание: при выпуске из производства устанавливается тип сиг-			
нала признака реверса – « сууой контакт »			

8.11 Установка контроля обрывов (коротких замыканий) линии выходного сигнала и линии сигнала признака реверса

- 8.11.1 Используется для реализации контроля состояния линии со стороны теплосчетчика ТЭМ-106. При этом выходные каскады должны быть типа «сухой контакт».
- 8.11.2 ВНИМАНИЕ! При подключении расходомера к другим типам теплосчетчиков (тепловычислителей) контроль обрыва линий должен быть отключен.
- 8.11.3 Установка контроля обрыва линии выходного сигнала и линии сигнала признака реверса осуществляется путём установки в требуемое положение джампера XT5 (XT6 для линии сигнала признака реверса) (см. рис. 8.7):

джампер установлен на контакты 12 - контроль линии есть; джампер установлен на контакты 2 3 - контроля линии нет.

8.12 Установка сетевого адреса расходомера

Установка сетевого адреса расходомера осуществляется путём установки/снятия джамперов 2/0...2/4 (поле XP4, см. рис. 8.7). Сетевым адресом расходомера является пятибитное двоичное число. Младший разряд адреса устанавливается джампером 2/0, старший – джампером 2/4. «1» соответствует состояние джампера ON, «0» соответствует состояние джампера OFF.

8.13 Установка контроля обрывов и коротких замыканий в цепи возбуждения ППР

Установка контроля обрывов и коротких замыканий в цепи возбуждения ППР расходомера осуществляется путём установки/снятия джампера **N1** (поле **XP4**, см. рис. 8.7)

ON (джампер установлен) – контроль включен;

OFF (джампер снят) – контроль выключен.

8.14 Сводная таблица всех параметров, устанавливаемых при помощи перемычек на плате расходомера

Устанавливаемые параметры	Разъем (контакты) на плате	Установки по умолча- нию	Пункт паспорта
Интерфейс обмена	XP5 (4-5)	OFF (RS-485)	8.7
Скорость обмена	XP4 (BOD)	OFF (9600)	8.8
Вид выходного сигнала	XP4 (F/N)	OFF (частотный)	8.9
Конфигурация вы- хода (F/N)	XT1, XT2	OFF, OFF («сухой кон- такт»)	8.10
Конфигурация вы-			
хода сигнала при- знака реверса (FR)	XT3, XT4	OFF, OFF («сухой кон- такт»)	8.10
Контроль линии выходного сигнала	XT5	2 3 (выключен)	8.11
Контроль линии сигнала признака реверса	XT6	2 3 (выключен)	8.11
Сетевой адрес	XP4 (2/02/4)	OFFOFF (0)	8.12
Контроль цепи возбуждения ППР	XP4 (N1)	OFF (выключен)	8.13

Перемычка N2 (поле XP4) не используется (резерв).

После проведения установок необходимо поставить переднюю панель ППМ на место и завинтить все винты.

9 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Специального технического обслуживания в процессе эксплуатации расходомер не требует.

Рекомендуется проводить периодический визуальный осмотр с целью контроля работоспособности расходомера, соблюдения условий эксплуатации, отсутствия механических повреждений составных частей прибора и наличия пломб.

При наличии в теплоносителе взвесей и возможности выпадения осадка, трубу ППР необходимо периодически промывать с целью его устранения.

Перед отправкой прибора на поверку или ремонт необходимо после демонтажа очистить внутренний канал ППР от отложений, образующихся в процессе эксплуатации. Снятие отложений необходимо проводить при помощи ветоши, смоченной в воде.

Запрещается применение острых и режущих предметов для очистки внутреннего канала ППР.

По мере необходимости рекомендуется очищать составные части расходомера при помощи сухой или смоченной в воде ветоши.

Замена предохранителей осуществляется в следующем порядке:

- отключить расходомер от сети питания;
- отвинтить винты на верхней крышке и снять ее (вид расходомера со снятой верхней крышкой приведен на Рис. 8.7);
- извлечь предохранитель при помощи пинцета;
- установить новый предохранитель;
- установить верхнюю крышку и закрутить винты.

10 ПОВЕРКА

Расходомер подлежит обязательной первичной государственной поверке при выпуске из производства, а также, в случае необходимости, после ремонта.

Поверка расходомера должна проводиться в органах государственной метрологической службы или лабораториях аккредитованных органами Госстандарта.

Поверку расходомеров производят по методике поверки МРБ МП.3921-2024. «Расходомеры-счётчики электромагнитные РСМ-05. Методика поверки».

Периодичность поверки расходомера установлена в Республике Беларусь 4 года, в Российской Федерации 5 лет.

При сдаче прибора на поверку паспорт должен находиться вместе с прибором.

11 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Возможные неисправности расходомера и способы их устранения приведены в таблице 11.1.

Таблица 11.1

Наименование не- исправности, внеш- ние проявления и дополнительные признаки.	Вероятная причина	Способ устране- ния
При включении при- бор не работает	Перегорел сетевой предо- хранитель.	Заменить предохранитель в корпусе ППМ.
Отсчёт объема при не- подвижной среде	Плохое заземление.	Проверить заземле- ние.
	Просачивание жидкости через запорную арматуру.	Устранить просачи- вание жидкости.
	Наличие электрического тока в трубопроводе.	Устранить источник тока
	Не заполнен жидкостью трубопровод ППР.	Заполнить трубопро- вод или выключить расходомер.

Во всех остальных случаях необходимо обратиться в сервисный центр предприятия-изготовителя с подробным описанием возникших проблем.

12 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

РАСХОДОМЕР PCM-05.05CM №	соответствует техническим
условиям ТУ РБ 14746967.040-99 и признан г	одным для эксплуатации.
PCM-05.05CM	-11,К=л/имп
Пределы относительной погрешности измерею от 0,004Gmax до Gmax ± _ 1 _ %;	ний в диапазоне расходов
Реверс;	
Дополнительные функциональные возможнос	сти (см. п. 2.1.19)
Дата изготовления	202_ г
OTK	
Дата упаковки	_ 202_ г
М. П.	

Сведения о вводе в эксплуатацию, ремонте, поверках приведены в таблице 12.1.

Таблица 12.1

Дата	Наименование работы	Кто проводил	Подпись и оттиск клейма

13 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

Расходомер следует хранить на стеллажах в сухом и вентилируемом помещении при температуре от 5 до 40°C, относительной влажности до 95% при температуре 25 °C.

Транспортирование расходомера производится любым видом транспорта (авиационным - в отапливаемых герметизированных отсеках самолетов) с защитой от атмосферных осадков.

После транспортирования при отрицательных температурах вскрытие ящиков можно производить только после выдержки их в течение 24 часов в отапливаемом помещении.

Уложенные в транспорте расходомеры должны закрепляться во избежание падения и соударений.

14 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Предприятие-изготовитель гарантирует соответствие расходомера техническим условиям при соблюдении потребителем условий транспортировки, монтажа, эксплуатации.

Гарантийный срок составляет 48 месяцев со дня продажи прибора.

Гарантии распространяются только на расходомер, у которого не нарушены пломбы.

Расходомер, у которого во время гарантийного срока будет обнаружено несоответствие требованиям ТУ РБ 14746967.040-99, ремонтируется предприятием - изготовителем или заменяется другим.

Предприятие-изготовитель COOO «APBAC»:

Республика Беларусь

223035 Минский район, п. Ратомка, ул. Парковая, 10

секретарь: тел./факс (017) 517-17-47, 517-17-55

отдел продаж: тел. (017) 517-17-89, тел./факс (017) 517-17-31

e-mail: info@arvas.by, web: http://www.arvas.by

сервисный центр: г. Минск, ул. Тростенецкая, 5

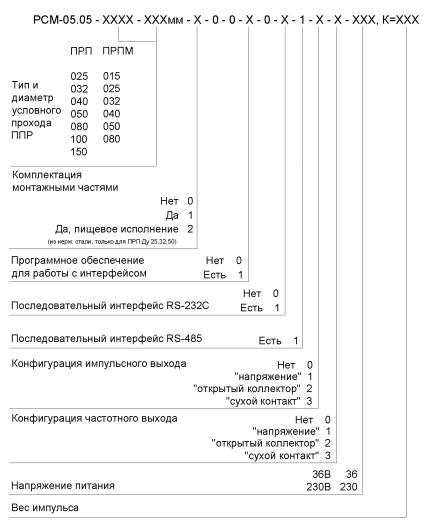
диспетчер: тел. (017) 358-23-96, факс (017) 337-10-27,

моб. +375-44-555-36-49

ремонт: тел. (017) 343-25-75

По вопросам гарантийного обслуживания следует обращаться в сервисный центр предприятия-изготовителя или по адресу:

15 СВЕДЕНИЯ О РЕКЛАМАЦИЯХ


В случае отказа в работе расходомера или обнаружения неисправности в течение гарантийного срока, а также обнаружения некомплектности при первичной приемке изделия, потребитель должен выслать в адрес предприятия-изготовителя письменное извещение со следующими данными:

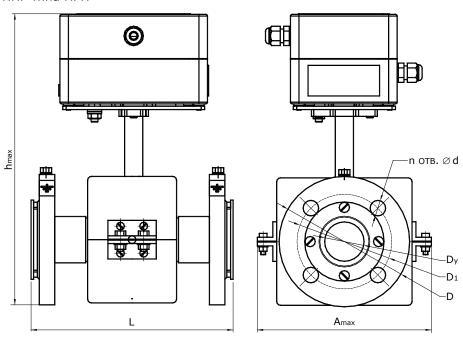
- тип прибора, заводской номер, дата выпуска, дата ввода в эксплуатацию;
- характер дефекта;
- адрес, по которому должен прибыть представитель предприятия-изготовителя, наименование организации, номер телефона;
- необходимые документы для получения пропуска.

Все предъявляемые рекламации должны быть зарегистрированы в таблице:

Дата предъявления рекламации	Краткое содержание рекламации	Меры, принятые по ре- кламации

ПРИЛОЖЕНИЕ А Спецификация заказа расходомера PCM-05.05CM

Пример спецификации заказа расходомера:

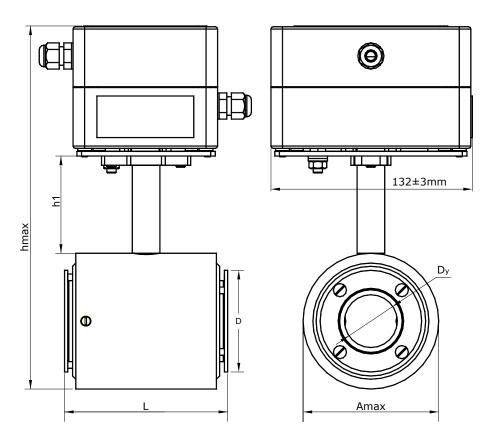

Расходомер-счетчик электромагнитный РСМ-05.05СМ – ПРПМ - 25мм - 1 - 0 - 0 - 1 - 0 - 0 - 1 - 3 - 3 - 230, k=1; Базовое исполнение.

В примере приведено обозначение расходомера PCM-05.05СМ с первичным преобразователем расхода типа ПРПМ, диаметром условного прохода (Ду) 25 мм, с комплектом монтажных частей, с программным обеспечением для работы с интерфейсом, без последовательного интерфейса RS-232C, с последовательным интерфейсом RS-485, с конфигурацией частотно-импульсного выхода – «сухой контакт», с напряжением питания 230 В, весовым коэффициентом импульса - 1л/имп, без функции реверса, базового исполнения.

Спецификация заказа составляется и уточняется на предприятии-изготовителе по данным карты заказа расходомера (ПРИЛОЖЕНИЕ Г). Карта заказа заполняется заказчиком.

ПРИЛОЖЕНИЕ Б Габаритные и установочные размеры

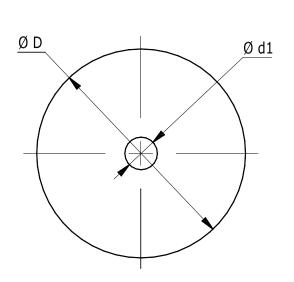
Габаритные и установочные размеры расходомера РСМ-05.05СМ с ППР типа ПРП

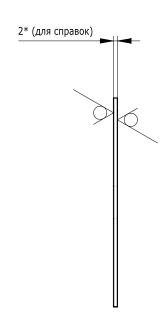


Условное обо-		Размер, мм								
значение	Dy	L	h _{max}	A _{max}	D	D ₁	d	n		
ПРП-25	25	+2 147(155) ⁻³	255	115	115	85	14	4		
ПРП-32	32	+3 202(210) ⁻³	280	180	135	100	18	4		
ПРП-40	40	+4 202(210) ^{- 2}	280	160	145	110	18	4		
ПРП-50	50	+4 202(210) ^{- 2}	290	180	160	125	18	4		
ПРП-80	80	+5 232(240) ^{- 2}	305	220	195	160	18	8		
ПРП-100	100	+5 238 ^{- 2}	335	232	230	190	22	8		
ПРП-150	150	+4 310 ^{- 4}	425	296	300	250	26	8		

<u>Примечание</u> - в скобках указан размер для исполнения с прижимными шайбами; прижимные шайбы предназначены для дополнительной защиты фторопластовой футеровки при монтаже и эксплуатации первичного преобразователя.

Рис. ПБ.1


Габаритные и установочные присоединительные размеры расходомера РСМ-05.05СМ с ППР типа ПРПМ



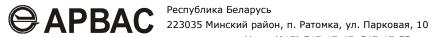
Условное			Разме	ер, мм		
обозначение	Dy	L	h _{max}	h1	Amax	D
ПРПМ-15	15	101±2	269	76	108	85
ПРПМ-25	25	101±2	269	76	108	85
ПРПМ-32	32	101±2	269	76	108	85
ПРПМ-40	40	101±2	269	76	108	85
ПРПМ-50	50	101±2	269	76	108	85
ПРПМ-80	80	180±2	301	76	140	125

Рис. ПБ.2

Паронитовые прокладки

Тип ППР	Ду	d1, mm	D, mm
ПРП	25	27	73
ПРП	32	36	84
ПРП	40	46	94
ПРП	50	54	109
ПРП	80	76	144
ПРП	100	100	170
ПРП	150	144	226
ПРПМ	15	17	109
ПРПМ	25	27	109
ПРПМ	32	36	109
ПРПМ	40	46	109
ПРПМ	50	54	109
ПРПМ	80	76	144

Рис. ПБ.3


ПРИЛОЖЕНИЕ В Требования к прямолинейным участкам при установке ППР

	Минимальная длина прямо- линейного участка		
Тип гидравлического сопротивлен	Перед ППР, Ду	После ППР, Ду	
3/Ay 1/Ay 1/Ay 1/Ay 1/Ay 1/Ay 1/Ay 1/Ay 1	Отвод с R>3Ду	3	1
5Ay 3Ay 3Ay R<3Ay	Отвод с R<3Ду	5	3
3.Ay 1.Ay 1.Ay	Полностью от- крытая шаро- вая задвижка	3	1
3Ay 1Ay 1Ay	Диффузор и конфузор с ко- нусностью до 30°	3	1
	Диффузор и конфузор с ко- нусностью до 10°	0	0

5Дy 3Дy	Гильза ТС; Фильтр грязе- вик;	5	3
5Дy 3Дy	Тройник; Открытая за- движка (не шаровая).	5	3
10Дy 5Дy	Насос; Клапан регу- лирующий;	10	5
10Ду 5Ду Ф. Ду Ф. Ду М.	Частично от- крытая за- движка.	10	5

ПРИЛОЖЕНИЕ Г Карта заказа расходомера

Карта заказа № расходомера РСМ-05.05СМ									
Заказчик:									
	(наименование предприятия, адрес, телефон)								
Ду ППР, мм <i>(подчеркнуть нужный)</i> Примечание									
15 25 32 40 50 80 100 150									
Отли	читель	ные ос	обенн	юсти ((вариант	по умол	ічанию <u>г</u>	<u>тодчеркнут</u>):	
								,	
Компл	іектаци:	я прямо	линей	ными ч	участкам	ии (да/ <u>но</u>	<u>er</u>)		
						интерфе			
(да/ <u>н</u>	<u>ет</u>)								
После	довател	тьный <i>и</i>	інтерф	ейс RS	S-232C <i>(</i> ,	да/ <u>нет</u>)			
Напря	іжение	питания	я (36В,	/ <u>230B</u>)				
Вес и	мпульса	(см. та	аблицу	2.2)					
Возмо	жность	измере	ния ре	еверси	вного ра	схода (д	а/ <u>нет</u>)		
Допол	інителы	ные фу	нкцион	нальнь	ie				
возмо	жности	(см. п.	2.1.19) (да/ <u>і</u>	<u>нет</u>)				
Приме	ечания:								
Колич	ество п	риборо	В	ШТ					_
	Количество приборов шт. Примечания								
прин									
Должн	Должность, Ф.И.О. и моб. тел. заказчика								
•									

секретарь: тел./факс (017) 517-17-47, 517-17-55

отдел продаж: тел. (017) 517-17-89,

тел./факс (017) 517-17-31

e-mail: info@arvas.by, web: http://www.arvas.by