
PCM-05.03CM

РАСХОДОМЕР-СЧЕТЧИК ЭЛЕКТРОМАГНИТНЫЙ

ПАСПОРТ APBC.746967.020.700ПС

СОДЕРЖАНИЕ

	ВЕДЕНИЕ	
1	HA3HAYEHNE	.5
2	ТЕХНИЧЕСКИЕ ДАННЫЕ	
	2.1 Технические характеристики	
	2.2 Рабочие условия	
	2.3 Метрологические характеристики	
	2.4 Габаритные размеры и масса	
3	КОМПЛЕКТНОСТЬ	.12
	ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО РАСХОДОМЕРА	
	4.1 Принцип действия	
	4.2 Состав и конструкция расходомера	
	МАРКИРОВКА И ПЛОМБИРОВАНИЕ	
6	ВЫБОР ТИПОРАЗМЕРА РАСХОДОМЕРА	.15
7	МЕРЫ БЕЗОПАСНОСТИ	.16
8	МОНТАЖ И ПОДГОТОВКА К РАБОТЕ	.17
	8.1 Общие требования	
	8.2 Требования к месту установки расходомера (ППР)	
	8.3 Монтаж расходомера (ППР)	
	8.4 Особенности монтажа ППР пищевого исполнения	
	8.5 Требования к месту установки ТС	
	8.6 Монтаж ТС	
	8.7 Монтаж ИВБ и электрических цепей	
	8.8 Описание интерфейсов расходомера	
	8.9 Подготовка к работе	
_	8.10 Демонтаж	
9	ПОРЯДОК РАБОТЫ	
	9.1 Описание режима «Рабочий»	
	9.2 Описание режима «Расширенный рабочий» и «Служебный»	
	9.3 Дополнительные возможности расходомера	
) ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	
	1 ПОВЕРКА	
	2 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ	
1;	З СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	.45
	4 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ	
	5 ГАРАНТИИ ИЗГОТОВИТЕЛЯ	
	3 YYET PABOTЫ	
	РИЛОЖЕНИЕ А Спецификация заказа расходомера	
	РИЛОЖЕНИЕ Б Габаритные и установочные размеры	
	РИЛОЖЕНИЕ В Требования к прямолинейным участкам при установ	
	ΠΡ	
П	РИЛОЖЕНИЕ Г Схемы электрических соединений с АРВ-02	.57

ВВЕДЕНИЕ

Настоящий паспорт распространяется на расходомер-счетчик электромагнитный РСМ-05.03СМ (далее – расходомер) и предназначен для ознакомления с его устройством, конструкцией, принципом действия, правилами эксплуатации и порядком выполнения монтажных работ.

Перед началом монтажных работ и эксплуатацией прибора внимательно ознакомьтесь с настоящим паспортом.

Монтаж и подготовка к работе расходомера должны производиться в строгом соответствии с разделом паспорта «Монтаж и подготовка к работе»

В разделе паспорта "УЧЕТ РАБОТЫ" должны производиться отметки об обязательной первичной и периодической госповерках, датах ввода расходомера в эксплуатацию, снятия расходомера на поверку (ремонт) и ввода в эксплуатацию после поверки (ремонта). Отметки производятся организацией, выполнявшей установку (поверку, ремонт). Отсутствие отметки дат ввода в эксплуатацию, снятия на поверку (ремонт) и ввода в эксплуатацию после поверки (ремонта) считается нарушением правил эксплуатации!

Предприятие-изготовитель оставляет за собой право вносить в конструкцию и схему расходомера изменения непринципиального характера без отражения в паспорте.

В паспорте приняты следующие сокращения:

ИВБ - измерительно-вычислительный блок;

ППР - первичный преобразователь расхода;

Ду – диаметр условного прохода;

ТС – термопреобразователь сопротивления;

ЭДС - электродвижущая сила;

ПК – IBM совместимый персональный компьютер.

Запрещается:

- на всех этапах работы с расходомером касаться руками электродов, находящихся во внутреннем канале ППР;
- проведение электросварочных работ при включенном питании расходомера;
- производить сварку на трубе и фланцах ППР;
- протекание сварочного тока через корпус прибора;
- установка и эксплуатация расходомера в взрывоопасных зонах всех классов.

ВНИМАНИЕ!

При проведении сварочных работ расходомер должен быть защищен от попадания искр и окалины.

Весь объём трубопровода ППР должен быть заполнен измеряемой жидкостью.

Расходомеры-счетчики электромагнитные PCM-05 зарегистрированы в Государственном реестре средств измерений Республики Беларусь под \mathbb{N}^9 P5 03 07 10900 24, Государственном реестре средств измерений Российской Федерации под \mathbb{N}^9 19714-24 и имеют соответствующие сертификаты об утверждении типа средств измерений.

1 НАЗНАЧЕНИЕ

Расходомер предназначен для измерения объемного расхода и объема электропроводных жидкостей, питьевой воды, жидких пищевых продуктов (далее жидкостей); массового расхода и массы воды; контроля расхода жидкостей в системах автоматического регулирования объектов промышленного назначения.

Расходомер может использоваться в составе теплосчетчиков для коммерческого учёта количества теплоты и теплоносителя, потребляемой жилыми и общественными зданиями, промышленными предприятиями.

Расходомер РСМ-05.03СМ осуществляет автоматическое измерение:

- среднего объёмного расхода, [м³/ч];
- среднего массового расхода, [т/ч];
- температуры потока, [°C]¹;
- времени наработки с дискретностью 0,1,[ч];
- календарного времени с индикацией часов, минут, секунд, числа, месяца и года;
- суммарного объёма жидкости протекшего за время наработки в прямом и реверсивном направлении, $[M^3]$;
- суммарной массы жидкости протекшей за время наработки в прямом и реверсивном направлении, [т].

Преобразование:

- среднего объёмного или массового расхода или температуры жидкости в унифицированный сигнал постоянного тока 4-20 мА, при установленном модуле токового выхода;

- среднего объёмного или массового расхода в частотный сигнал;
- протекшего объема в импульсный сигнал;
- обеспечивает передачу данных по последовательным

¹ по согласованию с потребителем, допускается эксплуатация расходомеров без использования соответствующих измерительных преобразователей, в этом случае температура может быть установлена программно.

интерфейсам RS-232C, RS-485 при установленной плате интерфейсов RS-232/RS-485.

Расходомер РСМ-05.03СМ сохраняет в энергонезависимой памяти:

- время наработки;
- объём и массу воды за время наработки;
- установочные параметры: Ду, максимальный и минимальный измеряемые расходы, тип ТС и характеристики выходных сигналов и др.

Глубина архива регистрируемых параметров:

- часовых данных 1600 (66 суток);
- суточных данных 800 (26 месяцев);
- месячных записей 60 (5 лет);
- архив событий 2500 записей.

Расходомер сохраняет информацию в энергонезависимой памяти при отключении питания в течение не менее 10 лет при соблюдении правил хранения и транспортирования.

Расстановка запятых и число разрядов, индицируемых на ЖКИ при измерении объемного расхода, объема и массы теплоносителя приведены в таблице 1.1. Температура теплоносителя измеряется с разрядностью xxx.xx.

Таблица 1.1

Ду [мм]	G [м³/ч]	V [м³]; М [т]
15	x.xxxx	xxxxxxx.xxx
25, 32, 40, 50	xx.xxx	xxxxxxx.xx
80, 100, 150	xxx.xx	xxxxxxx.x

2 ТЕХНИЧЕСКИЕ ДАННЫЕ

2.1 Технические характеристики

2.1.1 Расходомер осуществляет измерение среднего объемного расхода G в м 3 /ч в диапазоне от 0,5 до 100% от наибольшего расхода G_{max} , приведенного в таблице 2.1 для каждого Ду ППР.

Таблица 2.1

Ду ППР, мм	Диапазон расходов				
(11-1	G _{min} , м ³ /ч	G _{max} , м³/ч			
15	0,0315	6,3			
25	0,08	16,0			
32	0,125	25,0			
40	0,2	40,0			
50	0,315	63,0			
80	0,8	160,0			
100	1,25	250,0			
150	3,15	630,0			

<u>Примечание</u>: под наибольшим и наименьшим расходами (G_{max} и G_{min} соответственно) понимается максимальное и минимальное значения расходов, при которых расходомеры обеспечивают свои метрологические характеристики при непрерывной работе.

- 2.1.2 Потребитель может устанавливать значение минимального G и максимального G порога измерения объемного расхода, в пределах от 0,25 до 10% G_{max} для G и от 60 до 125% G_{max} для G при выходе за пределы которых расходомер формирует сообщение об ошибке (см. п. 9.2).
- 2.1.3 При наличии ТС расходомер осуществляет измерение температуры жидкости t в градусах Цельсия. Диапазон измерения температуры от 3 до 150 °C. Номинальные статические характеристики ТС, которые могут быть применены в комплекте с расходомером, выбираются из ряда: Pt'100 (W_{100} =1,3910), Pt100 (W_{100} =1,3850), Pt'500 (W_{100} =1,3910), Pt500 (W_{100} =1,3850), Cu'100 (W_{100} =1,4280), Cu100(W_{100} =1,4260). Класс допуска термопреобразователей «А», «В» или «С» по ГОСТ 6651-94. При отсутствии ТС значение температуры среды может быть установлено потребителем программно (см. п. 9.2).
- 2.1.4 В расходомере реализованы функции **Контроль G** \uparrow **и G** \downarrow . При активации данной функции выход за пределы диапазона измерения объемного расхода, заданного уставками **G** \uparrow **и G** \downarrow , вызывает изменение уровня сигнала с логической «1» на логический «0» на выходах F/N и V соответственно (при конфигурации выходного сигнала «напряжение»).
- 2.1.5 Расходомер может осуществлять (в зависимости от установок) контроль обрыва или короткого замыкания в цепи возбуждения ППР, а также контроль заполнения трубопровода жидкостью (см. п. 9.2).
- 2.1.6 Расходомер может осуществлять измерение объема и массы жидкости при реверсивном движении жидкости в трубопроводе и формировать выходной сигнал «признак реверса».

- 2.1.7 В расходомере предусмотрена функция «ДОЗА», предназначенная для дозированной подачи устанавливаемого пользователем объема жидкости (в литрах). Дозирование осуществляется путем формирования сигнала управления включение (вкл)/выключение (выкл) для исполнительного механизма. Включение при старте и выключение при прохождении через ППР установленного объема жидкости (см. п. 9.3.2).
- 2.1.8 Диапазон выходного унифицированного сигнала постоянного тока устанавливается на предприятии-изготовителе 4-20 мА. При этом максимальному значению выходного сигнала соответствует 100% значения шкалы измерения выбранного параметра.
- 2.1.9 Расходомер осуществляет преобразование среднего объёмного или массового расхода в частотный сигнал и протекшего объёма жидкости в импульсный сигнал.
- 2.1.10 Частота, соответствующая максимальному значению расхода в выбранном диапазоне (от 10 до $100\%G_{max}$), равна 2000 Гц.
- 2.1.11 Длительность импульса импульсного выходного сигнала 20 мс, минимальный период следования импульсов 50 мс.
- 2.1.12 Весовой коэффициент (л/имп.) определяется в зависимости от максимального расхода и Ду в соответствии с таблицей 2.2. Порядок установки описан в п. 9.2.

Таблица 2.2

		Ду=15	Ду=25	Ду=32	Ду=40	Ду=50	Ду=80	Ду=100	Ду=150
	0,01 л/имп	6,3	16						
	0,05л/имп	6,3	16	25					
	0,1 л/имп	6,3	16	25	40	63	160		
ĮĘ	0,25 л/имп	6,3	16	25	40	63	160		
۳,	0,5 л/имп	6,3*	16	25	40	63	160		
	1 л/имп	6,3	16	25	40	63	160	250	630
-	2,5 л/имп	6,3	16*	25*	40	63	160	250	630
5	5 л/имп	6,3	16	25	40*	63*	160	250	630
6	10 л/имп	6,3	16	25	40	63	160*	250*	630*
2	25 л/имп		16	25	40	63	160	250	630
>2	50 л/имп		16	25	40	63	160	250	630
1 3	100 л/имп		16	25	40	63	160	250	630
-	250 л/имп				40	63	160	250	630
					40	63	160	250	630
250	1000 л/имп					63	160	250	630
0	2500 л/имп								630
Σ	5000 л/имп								630
	10000 л/имп								630
	Примонацион		TMOUGHL	211211211147 2	2000000	COTROTCIBLU	0111140 BOC	DI IN KOOD	

<u>Примечание:</u> знаком * отмечены значения расходов, соответствующие весовым коэффициентам, устанавливаемым на предприятии-изготовителе.

- 2.1.13 Выходной каскад аппаратно может быть выполнен как: выходной сигнал **«напряжение»**, выходной сигнал типа **«сухой контакт»**, выходной сигнал типа **«открытый коллектор»** (см. рис. 8.9).
 - 2.1.14 Схема электрических соединений приведена на рис. 8.9.

- 2.1.15 Конфигурация выходных каскадов для расходомера PCM-05.03CM по умолчанию выполнена как **«сухой контакт»**. Напряжение на переходе коллектор эмиттер не должно превышать 30 В.
 - 2.1.16 Ток нагрузки не должен превышать 10 мА.
- 2.1.17 В конфигурации выходного каскада "выход напряжение" уровню логической единицы соответствует величина напряжения от 9 до 14 В, уровню логического нуля от 0 до 1,5 В.
- 2.1.18 Скорость передачи информации по последовательному интерфейсу 9600, 57600, 115200 бит/с. Максимальная длина линий связи для RS-232C 15м; для RS-485 1200м.
- 2.1.19 Расходомер фиксирует как собственные неисправности так и нештатные состояния системы отображая обозначение ошибки на ЖКИ (см п. 9.1).
 - 2.1.20 Потребляемая мощность расходомера не превышает 5 ВА.
- 2.1.21 Степень защиты корпуса расходомера от проникновения пыли и влаги соответствует IP54 (IP65 по заказу) по ГОСТ 14254-96.
 - 2.1.22 Расходомер предназначен для круглосуточной работы.
- 2.1.23 Среднее время наработки на отказ при эксплуатации расходомера в рабочих условиях с учётом технического обслуживания, регламентируемого паспортом, не менее 80 000 часов.
 - 2.1.24 Средний срок службы расходомера не менее 15 лет.

2.2 Рабочие условия

- 2.2.1 Температура измеряемой жидкости от 3 до 180 °C.
- 2.2.2 Температура воздуха, окружающего ППР, от 5 до 55 °C.
- 2.2.3 Температура воздуха, окружающего ИВБ, от 5 до 55 °C.
- 2.2.4 Относительная влажность окружающего воздуха не должна превышать 95% при 30 °C.
 - 2.2.5 Атмосферное давление от 86,0 до 106,7 кПа.
 - 2.2.6 Питание напряжением переменного тока 230 (36) $^{+10\%}_{-15\%}$ В.
 - 2.2.7 Частота питающей сети (50,0 \pm 1,0) Гц.
- 2.2.8 Напряжённость внешнего магнитного поля не должна превышать 400 А/м с частотой 50 Гц.
- 2.2.9 В случае, если расходомер используется в системе теплоснабжения, теплоноситель должен соответствовать СНиП 2.04.07-86. Если содержание примесей (ферромагнитных включений) превышает норму, то возможно выпадение осадка на футеровке ППР, что в некоторых случаях может привести к снижению точности измерений
- 2.2.10 Сопротивление каждого провода четырёхпроводной линии связи между ТС и ИВБ не должно превышать 100 Ом.
- 2.2.11 Длина соединительных линий между ППР и ИВБ не должна превышать $100 \ \text{м}.$
- 2.2.12 Сигнальные линии должны быть проложены экранированной в изоляции медной витой парой с сечением сигнального проводника не менее $0.35~{\rm km^2}$, в заземленном металлорукаве отдельно от линий возбуждения.

- 2.2.13 Сопротивление каждого провода линии возбуждения не должно превышать 5 Ом.
- 2.2.14 Сопротивление нагрузки токового выхода $4\div20$ мА не должно превышать 500 Ом.
- 2.2.15 Диапазон изменения удельной электрической проводимости жидкости от 5×10^{-4} до 5×10^{-1} См/м.
- 2.2.16 Расходомер не предназначен для установки и эксплуатации во взрывоопасных зонах по ПУЭ.
- 2.2.17 Рабочее давление в трубопроводе ППР до 1,6 МПа (по заказу до 2,5 МПа).

2.3 Метрологические характеристики

2.3.1 Пределы допускаемой относительной погрешности при измерении среднего объемного расхода и объема, а также при преобразовании измеренных значений в частотный или импульсный выходные сигналы δ , % приведены в таблице 2.3.

Таблица 2.3

Расход,	Пределы допускаемой относительной погрешности при измерении		
G, м³/ч	среднего объемного расхода, объема, $\delta_{\text{GV}}, \%$		
$G_{\text{min}} \leq G < 0,04G_{\text{max}}$	±2,0 при t≤30 °C ±3,0 при t>30 °C		
$0,04G_{max} \leq G \leq G_{max}$	± 1,0 (± 0,5)*		

^{*}по отдельному заказу

2.3.2 Пределы допускаемой относительной погрешности при вычислении массового расхода и массы жидкости δ , %, (без учета погрешности δ) приведены в таблице δ .

Таблица 2.4

Расход,	Пределы допускаемой относительной по- грешности при измерении		
G, т/ч	массового расхода, δ_{Gm} , %	массы, δ _m , %	
$G_{min} \leq G < 0.04G_{max}$	± 3,5		
$0.04G_{max} \leq G \leq G_{max}$	± 1,5		

- 2.3.3 Пределы допускаемой абсолютной погрешности при преобразовании сигналов от TC (без учета погрешности TC) не превышают $\pm (0.1+0.0001 \cdot t)$ °C, где t измеряемая температура, °C.
- 2.3.4 Пределы допускаемой приведенной погрешности при преобразовании среднего объемного расхода или температуры в унифицированный сигнал постоянного тока должны быть не более ± 0.5 %.

2.3.5 Погрешность прибора нормируется по показаниям ЖКИ и цифровому выходу.

2.4 Габаритные размеры и масса

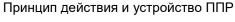
2.4.1 Масса расходомера в зависимости от диаметра условного прохода ППР и исполнения не больше значений, приведенных в таблице 2.7.

Таблица 2.7

Пу	Масса, кг, не более			
Ду, мм	ПРП	ПРПМ		
15	-	5		
25	5,5	5		
32	7,5	5		
50	8	7		
80	19	8,5		
100	25,5	ı		
150	32	-		

2.4.2 Габаритные и установочные размеры приведены в ПРИЛОЖЕНИИ Б.

3 КОМПЛЕКТНОСТЬ


Обозначение	Количе- ство	Примечание	
Первичный преобразоват	ель расхода (ППР) ¹⁾	•	
APBC.746967.007.100	ПРП -25		
APBC.746967.015.200	или ПРП – 32		
APBC.746967.189.000	или ПРП – 40	1	
APBC.746967.007.200	или ПРП – 50	1	
APBC.746967.007.300	или ПРП – 80	1	
APBC.746967.007.400	или ПРП – 100		
APBC.746967.007.500	или ПРП – 150	1 шт.	Определяется спе-
APBC.746967.103.000	или ПРПМ-15		цификацией заказа
APBC.746967.101.000	или ПРПМ-25		
APBC.746967.102.000	или ПРПМ-32	-	
APBC.746967.188.000	или ПРПМ-40	-	
APBC.746967.100.000	или ПРПМ-50	-	
APBC.746967.100.000	или ПРПМ-80	-	
Измерительно-вычислите.		1	<u> </u>
APBC.46967.020.700	ИВБ РСМ-05.03СМ	1 шт.	
Термопреобразователи со		јіші.	1
ТУ РБ 37418148.001-97	ТСП-1096 или	ı	
ТУ РБ 37418148.002-99	ТСП-1098 или	-	
ТУ РБ 14431873.001-97	ТСП-1098 или	-	
Ty 4211-010-17113168-95	ТПТ-1 или	-	
Ty 4211-010-17113168-95	ТМТ-1 или	1 шт.	
		4	
TY 4211-070-113168-95	КТПТР-01 или КТСПР-001-01	4	
ДДЖ 2.821.000 TУ			
Ty BY 100082152.003-2006	ТСПА		
Комплект монтажных част		I 2	1
APBC.746967.035.018÷026	Монтажные фланцы	2 шт.	5.4
APBC.746967.035.027÷035	Прокладки паронитовые	2 шт.	см. рис. В.4
APBC.746967.035.111÷117	Прямые участки	2 шт.	по заказу
APBC.746967.007.015	Гильза защитная или	1 шт.	Для Ду15-Ду100
APBC.746967.007.015-01	Гильза защитная 1)	1 шт.	Для Ду150
	Гайки М12 или	4 шт.	Ду25
ГОСТ 5927	Гайки М16 или	4 шт.	Ду32-Ду80
	Гайки М20 или	8 шт.	Ду100
FOCT 220.42	Гайки М24 или	8 шт.	Ду150
ГОСТ 22043	Шпильки М16х190	4 шт.	ПРПМ
ADDC 746067 007 071	Шпильки M16x300		
APBC.746967.007.071	Кабель подключения	-	по заказу
APBC.746967.055.160	Плата интерфейсов RS-232/RS-485	1 шт.	по заказу
APBC.746967.007.061-06	Прямой кабель RS-232C (Расходомер-СОМ)	1 шт.	по заказу
Комплект запасных часте	й		
ОЮО 480.003ТУ	Вставка плавкая ВПБ6-1-0.5A/250B	2 шт.	
	Расходомер - счетчик электро-	1 экз.	
АРВС. 746967.020.700 ПС	магнитный РСМ - 05.03С Паспорт.		
МРБ МН. 3921-2024	Методика поверки ²⁾	1 экз.	
<u>Примечания</u> : ¹⁾ – Комплект пос ²⁾ – Поставляется по отдельном	гавки определяется спецификациє у заказу.	й заказа.	

Содержание драгоценных материалов (определено комиссионно) в PCM-05.03CMM составляет: золота - 0,10984846 г; серебра - 0,12079028 г. Плата токового выхода содержит: золота - 0,0056 г. Плата RS-232/485 содержит: золота - 0,0067804 г, серебра - 0,0010813 г.

4 ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО РАСХОДОМЕРА

4.1 Принцип действия

Принцип действия расходомера основан на явлении электромагнитной индукции (см. рис. 4.1).

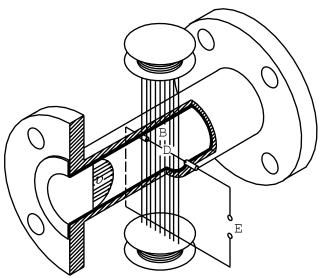


Рис. 4.1

При движении электропроводной жидкости в магнитном поле, создаваемом электромагнитной системой ППР, между электродами возникает ЭДС (E):

$$\mathring{\mathbf{A}} = \mathbf{B} \cdot \mathbf{\mathcal{V}} \cdot \mathbf{D} \,, \tag{1}$$

Где: В – индукция магнитного поля, создаваемого электромагнитной системой ППР;

v – средняя скорость потока жидкости;

D – расстояние между электродами.

Для данного типоразмера расходомера В и D являются постоянными величинами, поэтому ЭДС Е зависит только от средней скорости потока жидкости. Наводимая ЭДС передаётся в ИВБ, где вычисляется объёмный расход жидкости.

4.2 Состав и конструкция расходомера

- 4.2.1 Расходомер РСМ-05.03СМ является многофункциональным микропроцессорным устройством со встроенным цифробуквенным индикатором.
- 4.2.2 Значения измеряемых, вычисляемых и установочных параметров индицируются на двухстрочном цифробуквенном жидкокристаллическом индикаторе, установленном на передней панели ИВБ. Выбор индицируемых параметров производится нажатием кнопок, находящихся на передней панели. На передней панели так же размещены два светодиодных индикатора работы расходомера.
- 4.2.3 По заказу расходомер поставляется со стандартными последовательными гальваноразвязанными интерфейсами RS-232C и RS-485 (плата интерфейсная), через которые прибор производит обмен данными с компьютером (адаптером переноса данных, контроллером АСУ и т.д.).
- 4.2.4 По заказу расходомер может поставляться с гальванически развязанным модулем токового выхода 4-20 мА.
 - 4.2.5 Расходомер состоит из ИВБ и подключаемых к нему ППР и ТС.

5 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

Маркировка составных частей расходомера должна сохраняться в течение всего срока службы расходомера.

На передней панели ИВБ нанесены:

- наименование и условное обозначение расходомера;
- напряжение и частота источника питания;
- потребляемая мощность;
- степень защиты оболочки.

На боковой стенке ИВБ закреплена паспортная табличка, на которой указан заводской номер расходомера, порядковый номер ППР.

На ППР нанесены:

- наименование и условное обозначение ППР;
- порядковый номер ППР;
- товарный знак;
- условный проход ППР;
- наибольшее допускаемое давление;
- максимальная температура среды;
- степень защиты оболочки;
- стрелка, указывающая направление потока жидкости;
- год изготовления.

Маркировка тары производится в соответствии с ГОСТ 14192-96.

При выпуске с предприятия-изготовителя блоки расходомеров должны иметь следующие пломбы:

- внутри клеммной коробки ППР;
- внутри корпуса ИВБ в месте крепления электронного блока к корпусу.

После выполнения монтажных работ и задания необходимых установок расходомер может быть опломбирован представителями монтажной организации или представителями государственных органов надзора. При этом могут быть опломбированы следующие блоки расходомера:

- крышка клеммной коробки ППР;
- ТС на трубопроводе;
- корпус ИВБ.

В случае нарушения или несанкционированного снятия пломб предприятия-изготовителя потребителями, предприятие-изготовитель снимает с себя гарантийные обязательства.

6 ВЫБОР ТИПОРАЗМЕРА РАСХОДОМЕРА

Для выбора типоразмера расходомера необходимо знать диапазон расходов жидкости в трубопроводе, в котором будет устанавливаться ППР. Если диапазон расходов в данном трубопроводе укладывается в диапазон расходов нескольких типоразмеров ППР (см. табл. 2.1), то для обеспечения более устойчивой работы и повышения точности измерений следует выбирать расходомер с меньшим значением Ду.

Если значение Ду выбранного расходомера меньше внутреннего диаметра трубопровода, в который предполагается устанавливать ППР, то для монтажа в трубопровод используются переходные конуса (конфузор и диффузор) с углом конусности не более 15° .

При выборе ППР с меньшим Ду следует учитывать увеличение вносимого гидравлического сопротивления.

7 МЕРЫ БЕЗОПАСНОСТИ

Источником опасности при монтаже и эксплуатации расходомеров являются:

- переменное напряжение сетевого питания;
- давление жидкости в трубопроводах до 1,6 МПа (2,5 МПа по заказу);
- температура жидкости (трубопровода) до 150 °C.

Безопасность эксплуатации расходомеров обеспечивается:

- изоляцией электрических цепей составных частей расходомера;
- надёжным заземлением составных частей расходомера;
- прочностью корпуса ППР и защитных гильз ТС;
- герметичностью фланцевого соединения ППР с трубопроводом;
- перед проведением работ с помощью измерительного прибора необходимо убедиться в том, что на трубопроводе отсутствует опасное для жизни напряжение переменного или постоянного тока.

При эксплуатации расходомера необходимо соблюдать общие требования безопасности:

- не допускается эксплуатация расходомеров со снятыми крышками его составных частей;
- запрещается использовать расходомеры при давлении в трубопроводе, большем, чем рабочее давление ППР;
- запрещается демонтировать ППР до полного снятия давления в трубопроводе.

Перед включением расходомеров в электрическую сеть необходимо заземлить его составные части (рис 8.6 и рис 8.7).

При обнаружении внешних повреждений прибора или сетевой проводки следует отключить расходомер до выяснения причин неисправности специалистом по ремонту.

В помещениях повышенной опасности рекомендуется использовать расходомеры с питанием от сети напряжением 36 В.

Запрещается установка и эксплуатация расходомеров в пожароопасных и взрывоопасных зонах всех классов.

При установке и монтаже расходомеров необходимо соблюдать требования ГОСТ 12.3.003, ГОСТ 12.3.032, ГОСТ 12.3.036, а также Правил пожарной безопасности и техники безопасности.

При эксплуатации необходимо соблюдать «Правила устройства электроустановок», «Правила техники безопасности при эксплуатации электроустановок» и «Общие правила пожарной безопасности Республики Беларусь для промышленных предприятий».

Для тушения пожара, при возгорании расходомера, разрешается использовать только углекислотные огнетушители типа ОУ-2, ОУ-5, ОУ-10 и др.

8 МОНТАЖ И ПОДГОТОВКА К РАБОТЕ

Монтаж расходомера должен производиться в строгом соответствии с требованиями к монтажу настоящего паспорта и утвержденным проектом установки персоналом, ознакомленным с эксплуатационной документацией на расходомер.

8.1 Общие требования

8.1.1 Место установки расходомеров должно соответствовать условиям, приведенным в разделе «Рабочие условия».

8.2 Требования к месту установки расходомера (ППР)

- 8.2.1 ППР расходомера может быть установлен на вертикальных, горизонтальных и наклонных участках трубопровода при условии заполнения всего объёма трубопровода ППР жидкостью. Таким образом, не допускается установка ППР:
 - на самом высоком месте системы;
 - на вертикальной трубе со свободным выходом жидкости.

Примеры неправильной установки ППР приведены на рисунке 8.1.

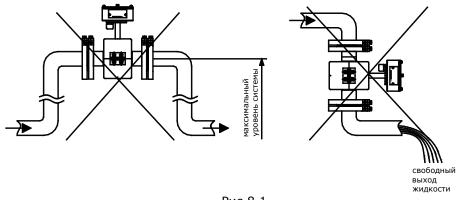


Рис.8.1

8.2.2 В месте установки ППР в трубопроводе не должен скапливаться воздух. Наиболее подходящее место для монтажа – нижний или восходящий участок трубопровода (см. рис.8.2).

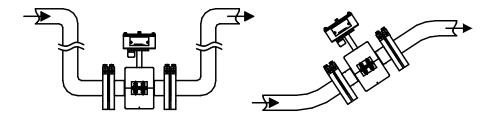


Рис.8.2

8.2.3 При возможном выпадении осадка в жидкости, ППР теплосчётчика должен устанавливаться вертикально, при этом направление потока должно быть снизу вверх (см. рис.8.3).

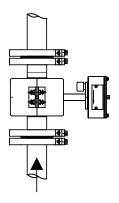


Рис.8.3

- 8.2.4 Выпадение токопроводящего осадка на футеровке трубопровода ППР может привести к снижению точности измерения объёмного расхода теплоносителя, поэтому не допускается использование расходомера в гидравлических трактах с угольными фильтрами.
- 8.2.5 Расходомер необходимо располагать в той части трубопровода, где пульсации и завихрения минимальные. При установке расходомера необходимо обеспечить прямолинейные участки трубопровода длиной не менее 3 Ду до и 1 Ду после ППР (см. рис. 8.4).
- 8.2.6 При наличии гидравлических сопротивлений перед ППР длины прямолинейных участков рекомендуется выбирать в соответствии с ПРИ-ЛОЖЕНИЕМ Е. Если отсутствует возможность обеспечить рекомендованные прямолинейные участки, то допускается установка струевыпрямителя на расстоянии 3-5 Ду перед ППР.

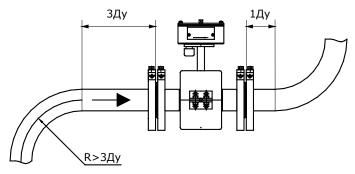
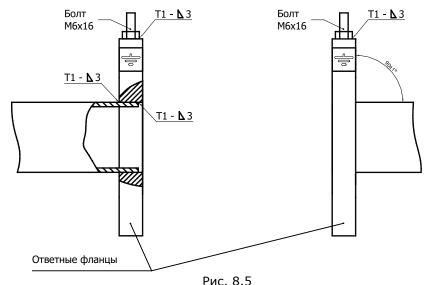


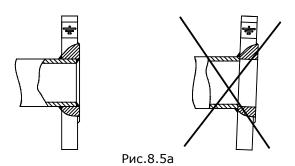
Рис. 8.4

- 8.2.7 Если диаметр ППР не совпадает с внутренним диаметром трубопровода, то необходимо использовать переходные конуса (конфузоры и диффузоры). Между переходными конусами и ППР также необходимо обеспечить прямолинейные участки трубопровода ЗДу до и 1Ду после ППР. На этих участках не должно быть никаких устройств или элементов, вызывающих завихрения потока жидкости.
- 8.2.8 **Запрещается** устанавливать расходомер под запорной арматурой или другими устройствами, при неисправности которых может вытекать жидкость.
- 8.2.9 **Запрещается** удалять герметичные вводы ИВБ или уплотнительные кольца в них.

8.3 Монтаж расходомера (ППР)


Перед началом работ на трубопроводе следует убедиться, что в выбранном месте установки ППР снято давление жидкости.

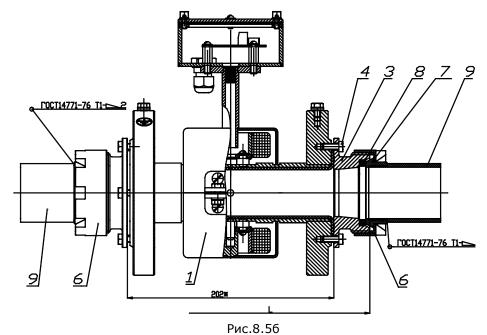
ВНИМАНИЕ! Установка расходомера (ППР) должна производится после завершения всех сварочных, строительных и прочих работ.


- 8.3.1 Перед тем, как разрезать трубопровод в месте предполагаемой установки расходомера (ППР), необходимо закрепить участки труб, которые могут отклониться от нормального положения после разрезания.
- 8.3.2 Если предусматривается использование конфузора и диффузора, то необходимо проверить соответствие установочных размеров конфузора и диффузора реальному диаметру подводящей трубы.
- 8.3.3 В выбранном месте установки расходомера (ППР) вырезать участок трубопровода с учётом габаритной длины расходомера (ППР) и технологических допусков на сварку.

 $8.3.4~{\rm K}$ прямолинейным участкам трубопровода приварить фланцы в соответствии с ГОСТ12820-80, при этом угол между осью трубопровода и плоскостью фланца должен быть $90\pm1^{\circ}$. Фланцы следует приваривать таким образом, чтобы после установки расходомера (ППР) ось электродов ППР лежала в горизонтальной плоскости (допустимое отклонение от линии горизонта $\pm10^{\circ}$). При монтаже ответных фланцев необходимо приварить болт заземления к верхней части монтируемого фланца (см. рис. 8.5).

ВНИМАНИЕ!!! На датчики расхода, монтаж которых выполнен с нарушением требований ГОСТ 12820-80 (соединение труба-фланец), гарантийные обязательства не распространяются (см. рис. 8.5а).

- 8.3.5 Установить расходомер (ППР) между приваренными фланцами, зафиксировав его двумя болтами (шпильками), крепящих ППР к фланцам. Расходомер (ППР) следует устанавливать таким образом, чтобы корпус ИВБ (клеммная коробка ППР) находилась над трубопроводом, а стрелка на ППР совпадала с направлением потока жидкости.
- 8.3.6 Уложить во фланцы паронитовые прокладки, поставляемые в комплекте с расходомером (см. рис. В.4, ПРИЛОЖЕНИЕ Б).


Допускается использование только паронитовых прокладок.

- 8.3.7 Установить оставшиеся болты (шпильки).
- 8.3.8 Отцентрировать внутреннее сечение ППР с внутренним сечением трубопровода.
- 8.3.9 Во избежание частичного перекрытия внутреннего сечения трубопровода необходимо обратить внимание на центровку паронитовых прокладок относительно трубопровода и ППР. Края прокладок не должны перекрывать сечение трубопровода.
- 8.3.10 Затяжку болтов (шпилек), крепящих ППР к фланцам на трубопроводе, производить поочерёдно по диаметрально противоположным парам, при этом необходимо избегать применения чрезмерно больших усилий во избежание деформации отбортованной на фланец футеровки ППР.
- 8.3.11 Рекомендуемый момент силы при закручивании гаек в зависимости от исполнения ППР приведен в таблице 8.1.

Таблица 8.1

Ду первичного преобразователя, мм	15	25	32	40	50	80	100	150
Момент силы закручи- вания гаек, Н•м	15	20	35	50	50	35	60	100

8.4 Особенности монтажа ППР пищевого исполнения

1. Вырезать участок трубопровода (9) с учетом установки 2-х конических штуцеров (7) и расстояния между торцами резьбовых штуцеров:

Ду трубопровода (штуцера резьбового)	L (размер для справок) , мм
25	227
32	272
40	272
50	272

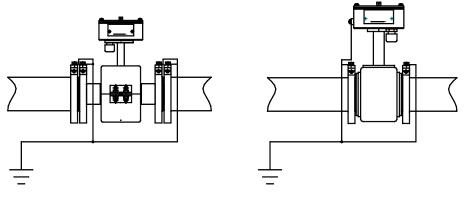
- 2. Надеть шлицевые гайки (6) и приварить конические штуцера (7).
- 3. Установить уплотнительные кольца (8) в штуцера резьбовые (3) и закрепить ПРП на трубопроводе шлицевыми гайками (6).

ПРИМЕЧАНИЕ: комплект монтажных частей (шлицевые гайки, конические штуцера и уплотнительные кольца) в комплект поставки не входят.

ВНИМАНИЕ! В случае заказа PCM-05.03CM с пределами относительной погрешности измерений $\delta_G = \delta_V = \delta_T = \delta_N = \pm 0,5$ %, расходомер поставляется с установленными на ППР штуцерами для резьбового соединения.

Не допускается снимать установленные штуцера, так как это может привести к ухудшению метрологических характеристик прибора.

ВНИМАНИЕ!


После того как болты (шпильки), крепящие ППР к фланцам будут затянуты, установленный расходомер (ППР) запрещается поворачивать вокруг оси трубопровода.

После установки расходомера (ППР) необходимо обеспечить его заземление в соответствии с рис 8.6, 8.7 для ПРП и ПРПМ соответственно.

Заземление ППР следует выполнять в соответствии с требованиями ПУЭ, т.е. путём непосредственного соединения заземляющего проводника с заземлителем, а не с трубопроводом.

Допускается вместо заземления выполнять зануление в соответствии с требованиями ПУЭ.

Запрещается использование металлорукавов в качестве заземляющих или нулевых защитных проводников.

8.5 Требования к месту установки ТС

- $8.5.1\,\mathrm{TC}$ в трубопроводе могут монтироваться перпендикулярно к оси трубопровода, наклонно и в колено трубопровода. Примеры установки защитных гильз термопреобразователей на трубопроводе приведены на рисунке $8.8\,(a,6,\mathrm{B,F})$.
- 8.5.2 Место установки ТС на трубопроводе должно быть расположено максимально близко к вводу в теплопункт (объект) и выводу из теплопункта (объекта).
- 8.5.3 При установке ТС в непосредственной близости от ППР во избежание внесения в поток жидкости дополнительных возмущений, его рекомендуется устанавливать после соответствующего ППР.
- 8.5.4 Запрещается устанавливать ТС под запорной арматурой или другими устройствами, из которых может вытекать жидкость.

8.6 Монтаж ТС

- 8.6.1 В выбранном месте установки ТС в верхней части трубопровода делается отверстие под защитную гильзу. Глубина погружения чувствительного элемента ТС должна быть до оси трубы или глубже (рис. 8.8 а).
- 8.6.2 Если диаметр чувствительного преобразователя ТС превышает 0,13D, то допускается при установке ТС применять расширитель (рис. 8.8 б), где Dp внутренний диаметр расширителя.
- 8.6.3 К трубопроводу приваривается штуцер таким образом, чтобы центры отверстий в трубопроводе и в штуцере совпадали. Наклонные штуцера привариваются таким образом, чтобы ТС устанавливался в соответствии с ЕН 1434.
- 8.6.4 Защитная гильза ввинчивается в штуцер. При сварке следует обратить внимание на сохранность резьбы штуцера. Вся поверхность защитной гильзы должна иметь контакт с жидкостью, температура которой измеряется. Затем в защитную гильзу вставляется ТС и фиксируется зажимным винтом.
- 8.6.5 При наклонной установке TC, его необходимо устанавливать таким образом, чтобы герметичный ввод TC был направлен вниз.
- 8.6.6 После установки ТС, штуцер и участки трубопровода в месте установки ТС рекомендуется теплоизолировать с помощью теплоизолирующих материалов.

Рекомендуемые варианты установки термопреобразователей на трубопроводе

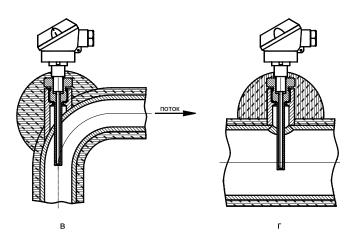


Рис.8.8

8.7 Монтаж ИВБ и электрических цепей

Возможно применение кабелей для подключения ППР и ТСП к ИВБ, поставляемых по отдельному заказу.

- 8.7.1 Крепление ИВБ для расходомера в выбранном месте осуществляется через отверстия в кронштейнах, расположенных на задней стенке корпуса ИВБ, четырьмя винтами или шурупами диаметром не более 5 мм.
- 8.7.2 Монтаж электрических цепей должен осуществляться в соответствии со схемой электрических соединений, приведенной на рис. 8.9.
- 8.7.3 Для проведения монтажа необходимо отвернуть 4 винта на передней панели ИВБ и снять переднюю панель. После этого освобождается доступ к разъемам и клеммникам для подсоединения внешних цепей. Внешний вид ИВБ со снятой передней панелью приведен на рис. 8.10.
- $8.7.4\ \Pi\Pi P$ соединяется с ИВБ двумя линиями сигнальными (контакты 1, 2, 3 клеммника ППР) и возбуждения (контакты 4, 5 клеммника ППР).
- 8.7.5 В качестве кабеля для подвода сигнальных линий должен использоваться экранированный кабель с двумя свитыми центральными жилами (витая пара в экране с изолированным экраном). Шаг скрутки от 30 до 50 мм. Рекомендуется использовать кабели: КММ 2×0,35 мм², ПВЧС 2×0,35 мм², ШВЧИ 2×0,35 мм² или КСВВЭ 2×0,5 мм². Кроме того, кабель с сигнальными линиями необходимо прокладывать в заземленном металлорукаве или трубе по всей длине кабеля. Поскольку выходное напряжение сигнала, снимаемого с ППР, составляет несколько десятков микровольт, то во избежание дополнительных погрешностей, вызванных наводками на сигнальные линии; не допускается прокладка сигнальных линий в одной трубе (металлорукаве) с другими линиями. Сигнальные линии следует пространственно разносить с другими линиями, минуя промежуточные разъёмы. Рекомендуется сигнальные линии располагать на расстоянии не менее 300 мм от других линий, в том числе и от линии питания расходомера.
- 8.7.6 Экран кабеля сигнальных линий должен быть надежно изолирован внешней оболочкой от трубы или металлорукава, в котором он прокладывается, и присоединен к ППР и ИВБ в соответствии с рис. 8.9.

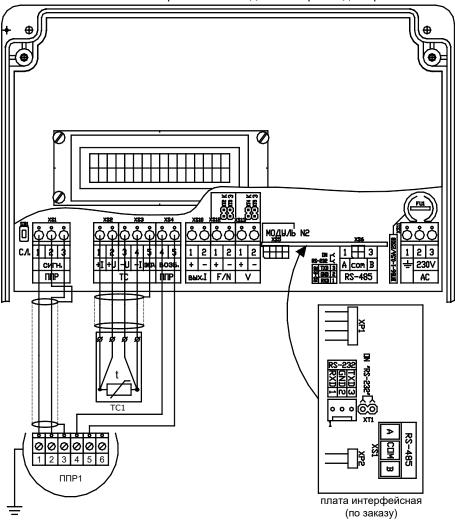
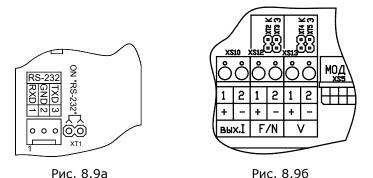



Рис. 8.9

Примечания:

- 1) При установке расходомера без использования ТС неиспользуемые входы 1, 2, 3, 4 канала измерения температуры необходимо закоротить между собой.
- 2) Выбор типа интерфейса (RS-232C или RS-485) осуществляется путем установки (снятия) джампера **XT1 на плате интерфейсной** (см. рис. 8.9a):

- джампер установлен RS-232C;
- джампер снят RS-485.

3) Конфигурация выходных каскадов F/N и V выбирается путём установки/снятия джамперов XT2 (XT4), XT3 (XT5), расположенных за клеммниками F/N и V (см. рис. 8.96, 8.98, 7.98,

Таблица 8.2

F/N V			Состояние выходного каскада
	ON	ON	Выходной сигнал – «напряжение»
	OFF	OFF	Выходной сигнал типа «сухой контакт»
	OFF	ON	Выхолной сигнал типа «открытый коллектор»

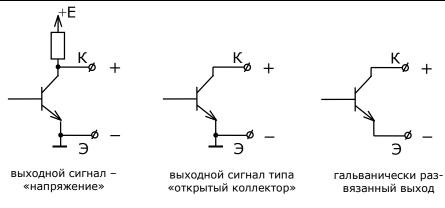


Рис. 8.9в

При подключении внешних устройств к выходам F/N и V напряжение на переходе коллектор-эмиттер не должно превышать 30 В, ток нагрузки не должен превышать 10 mA.

- 8.7.7 Не допускается наращивание (соединение) сигнальных линий таким образом, чтобы в месте стыка становилось возможным появление электрических утечек или окисление контактов.
- 8.7.8 Заземление всех кабельных трубопроводов (металлорукавов) должно выполняться таким образом, чтобы исключить образование замкнутых контуров заземления. Отдельные участки кабельного трубопровода (металлорукава) должны либо соединяться между собой с помощью переходных металлических коробок, обеспечивающих надежное электрическое соединение, либо иметь собственные заземления, исключающие образование замкнутых контуров. Идеальным следует считать разводку заземления «звездой».

Внешний вид ИВБ РСМ-05.03СМ со снятой передней панелью

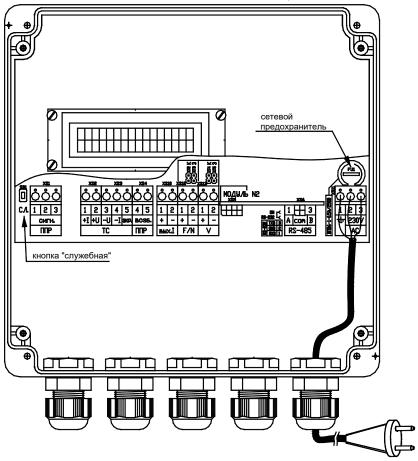


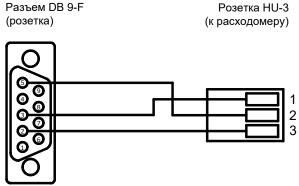
Рис. 8.10

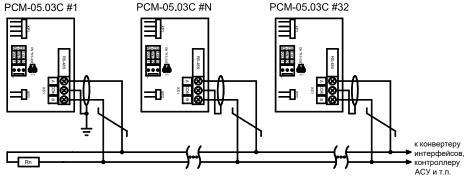
- 8.7.9 Вывод сигнальных линий при подключении ППР к ИВБ должен производиться через отдельный герметичный ввод на корпусе ИВБ.
- 8.7.10 Линии возбуждения могут быть проведены двухжильным кабелем без экрана, например ШВВП $2\times0,5$ мм 2 или ШВА $2\times0,5$ мм 2 . Во избежание дополнительных помех и наводок, а также механических повреждений кабелей, рекомендуется линии возбуждения прокладывать в стальных заземленных трубах или металлорукавах.
- 8.7.11 Вывод линий возбуждения при подключении ППР к ИВБ должен осуществляться через отдельный герметичный ввод на корпусе ИВБ.
- 8.7.12 Подключение ТС к ИВБ производится по 4-х проводной схеме в соответствии с рис. 8.9. Для подключения термопреобразователей к ИВБ рекомендуется использовать кабели: КММ $4\times0,35~\text{мм}^2$, ШВВП $4\times0,5\text{мм}^2$, РПШ $4\times0,5\text{мм}^2$, КУПР $4\times0,5\text{мм}^2$ или СПОВ $4\times0,5\text{мм}^2$. Во избежание дополнительных помех и наводок, а также механических повреждений кабелей линии связи ИВБ с ТС рекомендуется также прокладывать в стальных заземленных трубах или заземлённых металлорукавах. При использовании кабеля КММ $4\times0,35~\text{км}^2$ экранирующую оплетку кабеля подключить к контакту 5~ «экр.» зоны подключения ТС.
- 8.7.13 Линии токового выхода должны выводится через отдельный герметичный ввод. Не допускается прокладка линий токового выхода совместно с линиями дискретных выходов, так как при максимальном сопротивлении нагрузки возможно проникновение импульсных помех на шину токового выхода.
- 8.7.14 Линии последовательного интерфейса выводятся через отдельный герметичный ввод.
- 8.7.15 В неиспользуемые герметичные вводы необходимо установить заглушки, чтобы исключить попадание влаги в корпус ИВБ.
- 8.7.16 После подключения к ИВБ соединительных линий необходимо зажать герметичные вводы. Для защиты от конденсата герметичные вводы клеммной коробки ППР рекомендуется заполнить силиконовым герметиком.
 - 8.7.17 Не допускается крепить кабели к трубопроводам.

8.8 Описание интерфейсов расходомера

- 8.8.1 Считывание и просмотр хранимых во внутренней памяти архивов и значений интеграторов расходомера осуществляется по интерфейсу RS-232C или RS-485 при помощи программы **StatRSM** для Windows /2000/XP/Vista/10. Для связи расходомера с ПК или конвертером интерфейсов (RS-232C \leftrightarrow RS-485) используются сигналы RXD, TXD и GND.
- 8.8.2 Выбор типа интерфейса (RS-232C или RS-485) осуществляется путем установки (снятия) джампера **XT1 на плате интерфейсной** (см. примечания рис. 8.9a):
- 8.8.3 Для прямого соединения расходомер ПК следует использовать кабель, изображенный на рис. 8.11.

Прямой кабель RS-232C (Расходомер - COM)




Рис. 8.11

- 8.8.4 При считывании данных по интерфейсу RS-485 для подключения расходомера к ПК дополнительно требуется конвертер, преобразующий сигналы интерфейса RS-232C в RS-485 и обратно. Рекомендуемый конвертер I-7520 с автоматически подстраиваемой скоростью и форматом. Для организации сети расходомеров на базе последовательного интерфейса RS-485 необходимо каждому прибору присвоить уникальный сетевой адрес (см. п. 9.2).
- 8.8.5 Схема электрических соединений при организации сети расходомеров на базе последовательного интерфейса RS-485 приведена на рис. 8.12.

<u>ВНИМАНИЕ!</u> Подключение (отключение) расходомера к ПК должно производиться при выключенном расходомере или ПК

Схема электрических соединений при организации сети

- 1. Согласующее сопротивление Rn устанавливается в крайних точках линий связи и должно быть равно волновому сопротивлению кабеля.
- 2. Экран линии связи заземляется в одной из крайних точек.

Рис. 8.12

8.9 Подготовка к работе

- 8.9.1 К работе допускаются расходомеры, не имеющие механических повреждений и нарушения пломб и подготовленные к работе в соответствии с требованиями настоящего раздела.
- 8.9.2 Проверить правильность монтажа электрических цепей в соответствии с электрической схемой подключения, приведенной на рис. 8.9.
 - 8.9.3 Провести контроль уплотнения герметичных вводов ИВБ и ППР.
- 8.9.4 Плотно закрыть крышку клеммной коробки ППР во избежание попадания в нее воды.
- 8.9.5 Включить расход жидкости под рабочим давлением. Проверить герметичность соединения ППР и защитных гильз термопреобразователей с трубопроводом. Течь и просачивание не допускаются.
- 8.9.6 Включить питание расходомера и убедиться в его работоспособности, для чего нажатием кнопок "влево" или "вправо" просмотреть все окна основного режима и убедится в изменении индицируемых величин.
- 8.9.7 Если в показаниях измерения расхода присутствует знак минус "-", то были неверно подключены сигнальные линии или направление потока не соответствует указанному на ППР.
- 8.9.8 После выдержки во включенном состоянии в течение 0,5 часа и отсутствии нарушений в работе расходомер считается готовым к эксплуатации.

8.10 Демонтаж

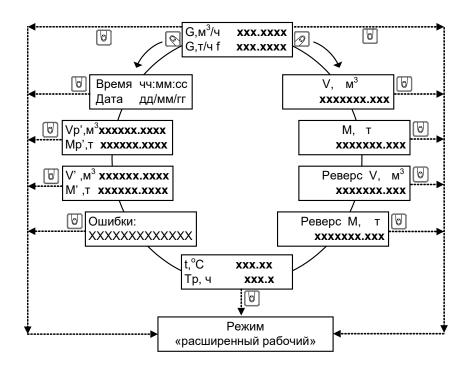
Демонтаж расходомера должен производиться квалифицированными специалистами в строгом соответствии с данным паспортом.

Перед началом работ на трубопроводе следует убедиться, что в выбранном месте установки ППР снято давление жидкости.

Демонтаж расходомера следует осуществлять в следующем порядке:

- отключить питание расходомера;
- перекрыть расход жидкости в месте установки расходомера (ППР) и убедиться в том, что на участке, где установлен ППР, отсутствует давление;
- отсоединить кабели связи ИВБ ППР;
- отсоединить от расходомера (ППР) заземляющие шины;
- ослабить гайки болтов (шпилек), крепящих ППР к фланцам на трубопроводе, и извлечь два болта (шпильки) со стороны ИВБ (клеммной коробки ППР). Затем аккуратно извлечь расходомер (ППР) не повредив фторопластовую футеровку;
- извлечь ТС из защитной гильзы;
- демонтировать ИВБ.

9 ПОРЯДОК РАБОТЫ


Управление работой расходомера осуществляется 4 кнопками: кнопкой «влево» ᠍; кнопкой «вправо» ᠍; кнопкой «вниз» ᠍, расположенными на передней панели ИВБ и кнопкой «Служебная» і, расположенной на плате цифровой обработки.

О состоянии расходомера можно судить по двум светодиодам зелёного и красного цвета, расположенных на передней панели ИВБ. Мигание зелёного светодиода с частотой примерно 1 раз в секунду свидетельствует о нормальной работе расходомера. Отсутствие мигания зелёного светодиода свидетельствует о сбое в работе микропроцессора ИВБ. Свечение красного светодиода свидетельствует о возникновении ошибок в работе расходомера (см. п. 9.1).

Расходомер имеет два пользовательских режима работы и один служебный режим. Пользовательские режимы это: режим «Рабочий» и режим «Расширенный рабочий».

9.1 Описание режима «Рабочий»

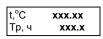

- 9.1.1 При включении расходомер выходит в режим «Рабочий», предназначенный для просмотра основных измеряемых и вычисляемых параметров.
- 9.1.2 Переход от одного индицируемого параметра к другому осуществляется равноправно в обе стороны посредством нажатия кнопок «вправо» или «влево»
- 9.1.3 Порядок перехода между окнами меню режима **«Рабочий»** изображен на рис. 9.1.

	Рис. 9.1					
Описание око	н режима «Рабочий»					
G,m³/4 xxx.xxxx G,т/4 f xxx.xxxx	Индикация измеренного объемного (м³/ч) и массового (т/ч) расхода жидкости. Символ f индицируется лишь в том случае, если величина «постоянной времени» фильтра больше 2 (см. «установка постоянной времени»)					
V, M ³	Объем жидкости с нарастающим итогом, измеряе- мый в м ³ .					
M, T xxxxxxxxxxxxx	Масса жидкости с нарастающим итогом, измеряемая в тоннах.					
Реверс V, м ³ хххххххххххххххх	Объем жидкости, протекший в реверсивном направлении с нарастающим итогом, измеряемый в м ³ . Отображается при включенной функции « Реверс ».					

Реверс	М,	Т
XXXXXXXXXXXXX		

Масса жидкости, протекшая в реверсивном направлении с нарастающим итогом, измеряемая в тоннах. Отображается при включенной функции «**Реверс**».

Индикация измеренной или запрограммированной температуры теплоносителя в °С; Индикация времени работы прибора в часах.

Индикация символов возникающих неисправностей и нештатных ситуаций в работе расходомера:

Возб – обрыв или короткое замыкание в цели воз-

Возб – обрыв или короткое замыкание в цепи возбуждения ППР;

Ошибки: XXXXXXXXXXXXXX

Ошибки: Возб ПТ ТСП G↓ G↑ **ПТ** – в трубопроводе отсутствует жидкость;

ТСП – обрыв или короткое замыкание в цепи ТСП; **G**↓ – расход меньше установленного минимального порога измерения расхода;

 \mathbf{G}^{\uparrow} – превышение установленного максимального порога измерения расхода.

Примечание: при возникновении ошибок **Возб** и **ПТ** счет интеграторов V и M останавливается.

V', M³ xxxxxx.xxxx M', T xxxxxx.xxxx Дополнительный интегратор объема V' и массы M' (см. п. 9.3.1)

Vp',m³xxxxxx.xxxx Mp',T xxxxxx.xxxx Дополнительный интегратор реверсивного объема Vp' и массы Mp' (см. п. 9.3.1).

Время чч:мм:сс Дата дд/мм/гг

Индикация текущего времени и даты.

9.2 Описание режима «Расширенный рабочий» и «Служебный»

- 9.2.1 Режим «Расширенный рабочий» предназначен для просмотра установок расходомера. Вход в режим «Расширенный рабочий» осуществляется по нажатию кнопки «вниз» находясь в любом окне режима «Рабочий» (кроме окна дополнительного интегратора объема и массы). Режим «Служебный» предназначен для изменения установок расходомера. Для работы в режиме «Служебный» необходимо снять переднюю панель ИВБ и обеспечить доступ к кнопке «Служебная».
- 9.2.2 Порядок перехода между окнами меню режима **«Расширен-ный рабочий»** и **«Служебный»** изображен на рис. 9.2.

Примечание: штриховой линией выделены окна, отображение которых зависит от конкретных установок в Вашем расходомере.

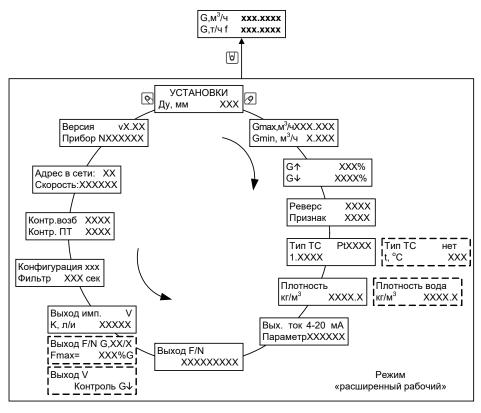
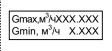


Рис. 9.2

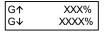
9.2.3 Для входа в режим изменения параметров (режим «Служебный») необходимо нажать кнопку «Служебная» (см. рис. 8.1). Изменение


значения параметра расходомера в режиме «Служебный» производится при мигающем изображении строки с этим параметром. Установка необходимого значения осуществляется дискретным увеличением или уменьшением изменяемого параметра посредством нажатия кнопки «вправо» или «влево» соответственно.

9.2.4 Переход между изменяемыми параметрами в режиме «Служебный» может осуществляться посредством кнопки «вниз», как в пределах одного меню, так и в пределах всех меню режима «Расширенный служебный». Выход из режима редактирования с сохранением установленного значения параметра осуществляется повторным нажатием кнопки «Служебная».

Описание окон меню режима «Расширенный рабочий»

УСТАНОВКИ		
Ду, мм	XXX	


Установка диаметра условного прохода ППР. Устанавливается из ряда: **15, 25, 32, 50, 80, 100, 150** мм. **Редактирование не доступно!**

Индикация максимального и минимального объемного расхода (диапазон измерения) в зависимости от выбранного диаметра условного прохода ППР в соответствии с табл. 2.1. Редактирование не доступно!

 \mathbf{G}^{\uparrow} – выбор максимального порога измерения объемного расхода. Задается от 60 до 125%Gmax с дискретностью 1%.

G − выбор минимального порога измерения объемного расхода. Устанавливается из ряда: 0,25-1%Gmax с дискретностью 0,05% и 1-10%Gmax с дискретностью 1%.

В соответствии с установленными максимальным и минимальным порогом будут регистрироваться ошибки $\mathbf{G} \downarrow$ и $\mathbf{G} \uparrow$ в работе расходомера, которые отображаются в соответствующем меню.

Например, для установленного Ду=50 мм, Gmin и Gmax равны 0,300 м³/ч и 60,0 м³/ч соответственно. Установив $\mathbf{G}^{\uparrow}=\mathbf{110}\%$ Gmax, $\mathbf{G}^{\downarrow}=\mathbf{0,25}\%$ Gmax для данного Ду регистрация ошибок \mathbf{G}^{\downarrow} и \mathbf{G}^{\uparrow} будет происходить при 0,15 м³/ч и 66 м³/ч соответственно.

Реверс XXXX Признак XXXX Выбор индикации объема, массы и дополнительного интегратора объема и массы для режима «реверс»; включение (вкл)/выключение (выкл) Активация выходного сигнала «признак реверса» включение (вкл)/выключение (выкл). (см п. 9.3.4)

Установка типа применяемых ТС (Pt 100, Pt' 100, Pt 500, Pt' 500, Cu 100, Cu' 100).

При выборе типа ТС отображается его номинальная статическая характеристика.

Тип TC нет t, °C XXX Тип TC PtXXXX 1.XXXX При установке типа TC «нет» (отсутствует TC) задается фиксированное значение температуры для расчета массового расхода и накопленной массы. Устанавливается в диапазоне $5\div150^{\circ}$ C с шагом 1° C. При использовании расходомера с подключенным к нему датчиком температуры расчёт массового расхода и массы воды производится с использованием реальных значений температуры воды. В случае возникновении ошибки **TCП** (обрыв или короткое замыкание в цепи TCП) значение температуры для расчета массового расхода и массы воды автомати-

чески берется из t, C ххх , т.е. то значение, которое установлено при отсутствии ТС.

Тип ТС

Плотность вода кг/м³ XXXX.X

Плотность кг/м³ XXXX.X

Плотность вода – осуществляется автоматическое вычисление плотности воды в соответствии с измеренным (установленным) значением температуры воды.

Плотность – осуществляется установка фиксированного значения плотности жидкости. Устанавливается от 900 до 1100 кг/m^3 с шагом 1 кг/m^3 .

Вых. ток 4-20 мА Параметр G, м³/ч

Вых. ток 4-20 мА Параметр G, $\tau/4$

Вых. ток 4-20 мА Параметр T^0 С

Индикация диапазона выходного тока (**Редактирование не доступно!**) и установка параметра, преобразуемого в выходной ток 4-20 мА.

Выход F/N Частотный Выбор типа выходного сигнала расхода: **частотный**, **импульсный** или **контроль G** $^{\uparrow}$. **Контроль G** $^{\uparrow}$ – см. п. 9.3.

Выход F/N Импульсный Выход F/N

Контроль G↑

Выход F/N G,m³/ч Fmax= XXX%G

Выход F/N G, т/ч Fmax= XXX%G

Выход имп. V К, л/и XXXXX

Выход V Контроль G↓ Выбор и установка соответствия значения максимальной частоты ($Fmax=2000\ \Gamma$ ц) объемному или массовому расходу (в процентах от Gmax); изменяется от 10 до 100% с дискретностью 10%.

Или выбор и установка значения весового коэффициента в л/имп (для импульсного выхода); значение весового коэффициента устанавливается из диапазона в зависимости от выбранного Ду ППР в соответствии с табл. 2.2.

Контроль G ↓ – см. п. 9.3.

Конфигурация ххх Фильтр XXX сек Режим «Конфигурация» является резервным, установки данного режима ни на что не влияют. Установка фильтра сглаживает разброс показаний измерения расхода. «Фильтр» может принимать значения «нет», 2÷60 сек с шагом 1 сек.

Контр.возб XXXX Контр. ПТ XXXX **Контр.** возб – включение (вкл)/выключение (выкл) контроля обрыва или короткого замыкания в цепи возбуждения ППР.

Контр. ПТ – включение **(вкл)**/выключение **(выкл)** контроля заполнения трубопровода жидкостью.

Адрес в сети: XX Скорость:XXXXXX Установка адреса прибора (0...1...32) в сети RS-485. Установка скорости обмена прибора с внешними устройствами (принимает значения из ряда **9600**, **57600**, **115200 6ит/сек**.).

Версия vX.XX Прибор NXXXXXX

Версия программного обеспечения и номер прибора.

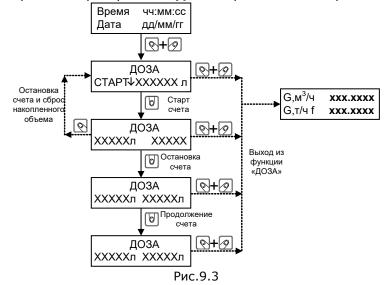
9.3 Дополнительные возможности расходомера

9.3.1 Расходомер имеет дополнительные интеграторы по объему V', массе M' для прямого потока и объему Vp', массе Mp' для реверсивного

V', M³ XXXXXX.XXXX M', T XXXXXX.XXXX

потока. Значения интеграторов отображаются в окнах

мр',т ххххххххххх рабочего режима соответственно. Нажатие кнопки вниз» в этом окне приводит к обнулению этих интеграторов. Например, если обнулить дополнительные интеграторы в 8.00, то в 8.00 следующего дня дополнительные интеграторы покажут объем и массу жидкости, протекшей за прошедшие сутки.


Vp', m³xxxxxxx.xxxx

Внимание! Отображение интегратора объема Vp' и массы Mp' (реверс) происходит при включенной функции **«Реверс»**.

9.3.2 Функция «ДОЗА», предназначена для дозированной подачи устанавливаемого пользователем объема жидкости (в литрах). Дозирование осуществляется путем формирования сигнала управления для исполнительного механизма: открытие при старте и автоматическое закрытие при прохождении через ППР установленного объема жидкости.

Установка объема дозы жидкости в литрах осуществляется кнопками «влево» $^{\odot}$ – уменьшение объема и «вправо» $^{\odot}$ – увеличение объема.

Работа расходомера в режиме «ДОЗА» представлена на рис. 9.3

Примечание: работа функции «ДОЗА» возможна при **отключенных** функциях «контроль G^{+} », «признак реверса», «фильтр». Схема электрических соединений указана в приложении Γ , рис. Γ .2.

9.3.3 Функции **Контроль G**↑ **и G**↓. При активации данной функции выход за пределы диапазона измерения объемного расхода, заданного уставками **G**↑ **и G**↓ вызывает изменение уровня сигнала с логической «1» на логический «0» на выходах F/N для **G**↑ и V для **G**↓ (при конфигурации выходного сигнала – «напряжение»).

Выход F/N Контроль G↑ и V для

Конфигурация выходных каскадов F/N для

Контроль G↓ выбирается путём установки/снятия джамперов **XT2** (**XT4**), **XT3** (**XT5**), расположенных за клеммниками F/N и V (см. рис. 8.9, таблицу 8.2). Схема электрических соединений указана в приложении Γ , рис. Γ .1.

9.3.4 Функция «Признак реверса» предназначена для формирования сигнала управления на выходе V для исполнительного механизма. Отображается только при выходном частотном или импульсном сигнале (

Выход F/N Частотный Выход F/N Импульсный

Конфигурация выходного каскада F/N функции «Признак реверса» аналогична функции Контроль \mathbf{G}^{\uparrow} и \mathbf{G}^{\downarrow} (см. п.9.3.3)

Выход V

Внимание! Функция **Контроль G** $^{\uparrow}$ имеет приоритет над функцией «**Признак реверса**», т.е. при включенной функции **Контроль G** $^{\uparrow}$ «**Признак реверса**» автоматиче-

Реверс ХХХХ

ски отключается и в меню не отображается

9.3.5 При помощи сервисной программы **Rsm0503c** имеется возможность дистанционного считывания и просмотра настроек и интеграторов прибора с персонального компьютера. Программа работает под управлением Microsoft Windows 9x/2000/XP/Vista по последовательному интерфейсу RS-232/485.

Программа **Rsm0503c** доступна на сайте предприятия по адресу http://www.arvas.by.

10 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Расходомер требует периодического осмотра с целью контроля соблюдения условий эксплуатации, отсутствия внешних повреждений прибора и его составных частей, наличия напряжения питания. Периодичность осмотра зависит от условий эксплуатации, но не должна быть реже одного раза в месяц.

При проведении профилактических работ в системе с установленным расходомером и при возможности выпадения токопроводящего осадка на футеровке ППР необходимо демонтировать ППР и очистить отложения в его внутреннем канале чистой мягкой ветошью, смоченной в воде. Очистка футеровки ППР должна производиться без повреждения поверхности электродов. Использование металлических и других предметов, могущих повредить поверхность электродов, для удаления осадка не допускается.

По мере необходимости рекомендуется очищать составные части расходомера при помощи сухой или смоченной в воде ветоши.

Несоблюдение условий эксплуатации расходомера может привести к отказу прибора или превышению допустимого уровня погрешности измерений. При появлении внешних повреждений необходимо вызвать сотрудника регионального представительства для определения возможности дальнейшей эксплуатации прибора.

Замена предохранителей осуществляется в следующем порядке:

- отключить теплосчетчик от сети питания;
- отвинтить винты на верхней крышке и снять ее (вид теплосчетчика со снятой верхней крышкой приведен на Рис. 8.10;
- извлечь предохранитель, для чего нажать на держатель и повернуть его против часовой стрелки (предохранитель канала возбуждения извлекается при помощи пинцета);
- установить новый предохранитель;
- установить верхнюю крышку и закрутить винты.

11 ПОВЕРКА

Расходомер подлежит обязательной первичной государственной поверке при выпуске с производства, а также в случае необходимости – после ремонта.

Поверка расходомера должна проводиться в органах государственной метрологической службы или лабораториях аккредитованных органами Госстандарта.

Поверку расходомеров производят по методике поверки «Расходомеры и счётчики электромагнитные PCM-05» МРБ МП.3921-2024.

Периодичность поверки расходомера установлена 4 года.

При сдаче прибора на поверку паспорт должен находиться вместе с прибором.

12 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Таблица 12.1

Наименование не- исправности, внешние проявле- ния и дополни- тельные при- знаки.	Вероятная причина	Способ устранения
При включении прибор не рабо- тает	Перегорел сетевой предо- хранитель.	Заменить предохранитель в корпусе ИВБ.
Отсутствует измерение расхода и температуры	Не соблюдено подключение выводов ППР и ТС к ИВБ.	Проверить соответствие подключения рис. 8.9.
	Плохое заземление ППР.	Проверить заземление.
	Просачивание жидкости через запорную арматуру.	Устранить просачи- вание жидкости.
Отсчёт объема при неподвижной среде	Плохо защищена от помех сигнальная линия ППР – ИВБ.	Устранить источник помех, улучшить защиту
СРСДС	Наличие электрического тока в трубопроводе.	Устранить источник тока
	Не заполнен жидкостью трубопровод ППР.	Заполнить трубо- провод или выклю- чить расходомер.
Появление в по- казаниях расхода	Направление потока не совпадает с указанным на корпусе расходомера.	Изменить направ- ление установки расходомера.
знака "-"	Неправильное подключе- ние сигнальных проводов.	Подключить в соответствии с рис. 8.9

13 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

РАСХОДОМЕР РСМ-05.03СМ № условиям ТУ РБ 14746967.040-99 и признан г	
Расходомер РСМ-05.03СМ,	
Пределы относительной погрешности измеренот 0,04Gmax до Gmax ±%;	ний в диапазоне расходов
Выходная частота соответствующая максимал Gmax = 2 кГц. (см. ПРИЛОЖЕНИЕ A).	льному расходу
Первичный преобразователь расхода ППР	No
Измерительно-вычислительный блок ИВБ	N ₀
Термопреобразователь TC1	Nō
Дата изготовления	202 г.
ОТК	
Дата упаковки	202 г.

М. П.

14 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

Расходомер следует хранить на стеллажах в сухом и вентилируемом помещении при температуре от 5 до 40°C, относительной влажности до 95% при температуре 25 °C.

Транспортирование расходомера производится любым видом транспорта (авиационным – в отапливаемых герметизированных отсеках самолетов) с защитой от атмосферных осадков.

После транспортирования при отрицательных температурах вскрытие ящиков можно производить только после выдержки их в течение 24 часов в отапливаемом помещении.

Уложенные в транспорте расходомеры должны закрепляться во избежание падения и соударений.

15 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Предприятие-изготовитель гарантирует соответствие расходомера требованиям ТУ РБ 14746967.040-99 при соблюдении потребителем условий транспортировки, монтажа, эксплуатации.

Гарантийный срок со дня продажи расходомера составляет 48 месяцев.

Гарантийный срок хранения – 6 месяцев с момента изготовления изделия.

Гарантии распространяются только на расходомер, у которого не нарушены пломбы.

Расходомер, у которого во время гарантийного срока будет обнаружено несоответствие техническим требованиям, ремонтируется предприятием-изготовителем или заменяется другим.

По вопросам гарантийного обслуживания следует обращаться в сервисный центр предприятия-изготовителя:

Республика Беларусь

223035 Минский район, п. Ратомка, ул. Парковая, 10

секретарь: тел./факс (017) 517-17-47, 517-17-55

отдел продаж: тел. (017) 517-17-89, тел./факс (017) 517-17-31

e-mail: info@arvas.by, web: http://www.arvas.by

сервисный центр: г. Минск, ул. Тростенецкая, 5

диспетчер: тел. (017) 358-23-96, факс (017) 337-10-27,

моб. +375-44-555-36-49

ремонт: тел. (017) 343-25-75

16 УЧЕТ РАБОТЫ

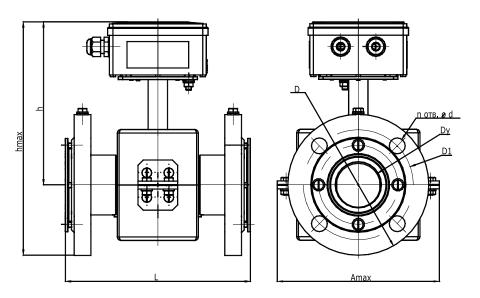
Сведения о вводе в эксплуатацию, ремонте, поверках приведены в табл. 16.1.

Таблица 16.1

			T
Дата	Наименование работы	Кто проводил	Подпись и оттиск клейма

ПРИЛОЖЕНИЕ А Спецификация заказа расходомера

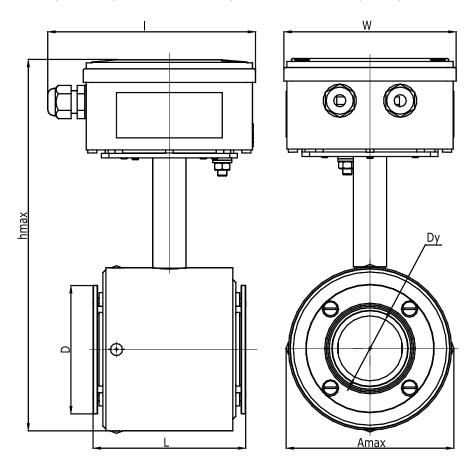
PCM-05.03CM - XXXX - XXXMM	1 - X - X - 0 - X - X - 1 - 1 - X - X - X	ΧX
ПРП ПРПМ		
Тип и 025 015 диаметр 050 032 условного 080 050 прохода 100 080 ППР 150		
Комплектация Нет монтажными частями Да	0	
Да (пищевое исполнение) (из нерж. стали, только для ПРП ду 25,32,40,50)	2	
•	leт 0 сть 1 ная 2	
Программное обеспечение для работы с интерфейсом	Нет 0 Есть 1	
Модуль №1 токовый выход 4-20, mA	Нет 0 Есть 1	
Модуль №2 Интерфейс RS-232/RS-485	Нет 0 Есть 1	
Конфигурация выходного каскада (F/N и V)	"напряжение" 1 "открытый коллектор" 2 "сухой контакт" 3	
Напряжение питания	36B 36 230B 230	


Пример записи расходомера при заказе:

Расходомер-счетчик электромагнитный РСМ-05.03СМ - ПРП - 80мм - 1 - 1 - 0 - 0 - 1 - 1 - 1 - 1 - 230

В примере приведёно обозначение расходомера PCM-05.03CM с первичным преобразователем расхода типа ПРП, диаметром условного прохода (Ду) 80 мм, с комплектом монтажных частей, с каналами измерения температуры, без программного обеспечения, с модулем токового выхода 4-20mA, с платой интерфейсной RS-232/RS-485, с конфигурацией выходного каскада F/N и V - "напряжение", с напряжением питания 230 В.

ПРИЛОЖЕНИЕ Б Габаритные и установочные размеры


Габаритные, установочные и присоединительные размеры ПРП

Условное		Размер, мм							
обозначение	Ду	L	h _{max}	h	Amax	D	D ₁	d	n
ПРП-25	25	+2 147(155) ⁻³	232	174	115	115	85	14	4
ПРП-32	32	+3 202(210) ⁻³	254	187	180	135	100	18	4
ПРП-40	40	+4 202(210) ^{- 2}	255	180	160	145	110	18	4
ПРП-50	50	+4 202(210) ^{- 2}	265	185	180	160	125	18	4
ПРП-80	80	+5 232(240) ^{- 2}	298	200	204	195	160	18	8
ПРП-100	100	+5 238 ^{- 2}	315	200	232	230	190	22	8
ПРП-150	150	+4 310 ^{- 4}	398	248	300	300	250	26	8

<u>Примечание</u> - в скобках указан размер для исполнения с прижимными шайбами; прижимные шайбы предназначены для дополнительной защиты фторопластовой футеровки при монтаже и эксплуатации первичного преобразователя.

Габаритные, установочные и присоединительные размеры ПРПМ

Условное		Размер, мм					
обозначение	Ду	L	h _{max}		W	A _{max}	D
ПРПМ-15	15	101±2	246	138	114	108	85
ПРПМ-25	25	101±2	246	138	114	108	85
ПРПМ-32	32	101±2	246	138	114	108	85
ПРПМ-40	40	101±2	246	138	114	108	85
ПРПМ-50	50	101±2	246	138	114	108	85
ПРПМ-80	80	180±2	278	138	114	140	125

Рис. В.2

Габаритные и установочные размеры ИВБ

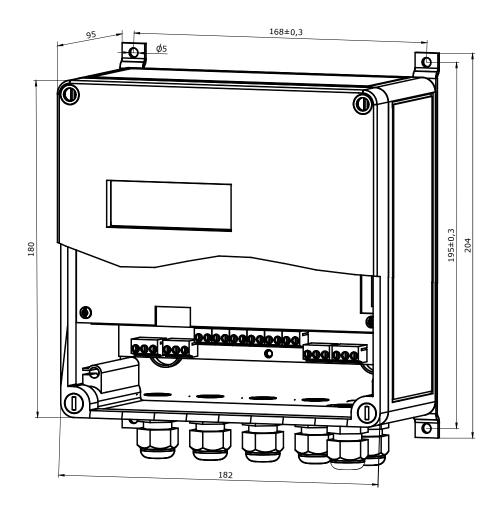
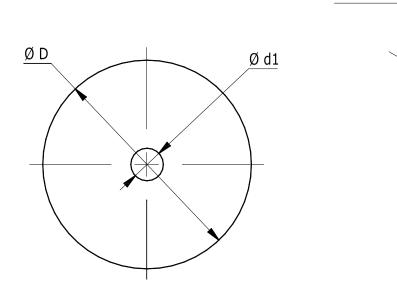



Рис. В.3

Паронитовые прокладки

2* (для справок)

Тип ППР	Ду	d1, mm	D, mm
ПРП	25	27	73
ПРП	32	36	84
ПРП	50	54	109
ПРП	80	76	144
ПРП	100	100	170
ПРП	150	144	226
ПРПМ	15	17	109
ПРПМ	25	27	109
ПРПМ	32	36	109
ПРПМ	50	54	109
ПРПМ	80	76	144

Рис. В.4

ПРИЛОЖЕНИЕ В Требования к прямолинейным участкам при установке ППР

		Минима длина і линейн участка	трямо- ого
Тип гидравлического сопротивления		Перед ППР, Ду	После ППР, Ду
3Ay 1Ay	Отвод с R>3Ду	3	1
5Ay 3Ay 3Ay R<3Ay	Отвод с R<3Ду	5	3
3Ay 1Ay 1Ay 1Ay 1Ay 1Ay 1Ay 1Ay 1Ay 1Ay 1	Полностью от- крытая шаро- вая задвижка	3	1
3Ay 1Ay 1Ay 1Ay 1Ay 1Ay 1Ay 1Ay 1Ay 1Ay 1	Диффузор и конфузор с ко- нусностью до 30°	3	1
	Диффузор и конфузор с ко- нусностью до 10°	0	0

5Дy 3Дy	Гильза ТС; Фильтр грязе- вик;	5	3
5Ay 3Ay 3Ay 4	Тройник; Открытая за- движка (не шаровая).	5	3
10Дy 5Дy	Насос; Клапан регу- лирующий;	10	5
10Ду 5Ду Ф. Д.	Частично от- крытая за- движка.	10	5

ПРИЛОЖЕНИЕ Г Схемы электрических соединений с адаптером APB-02

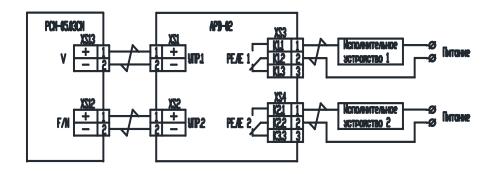


Рис. Г.1 - Подключение APB-02 к расходомеру PCM – 05.03CM с активизированной функцией «Контроль $G\uparrow$ и $G\downarrow$ »

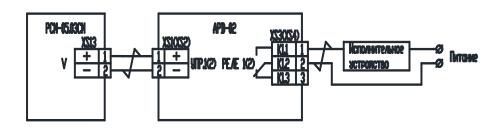


Рис. Г.2 - Подключение APB-02 к расходомеру PCM – 05.03CM с активизированной функцией «Доза»