
ТЭМ-206 теплосчетчик тепловычислитель

ОПИСАНИЕ ПРОТОКОЛА ОБМЕНА АРВС.746967.037.400ПО

СОДЕРЖАНИЕ

1 НАСТРОЙКИ ЛИНИИ СВЯЗИ	3
2 ОБЩАЯ СТРУКТУРА ПАКЕТА ДАННЫХ	
3 КОМАНДЫ УСТАНОВЛЕНИЯ СВЯЗИ	
3.1 Идентификация устройства (команда 0000)	4
4 КОМАНДЫ ЧТЕНИЯ ИЗ ПАМЯТИ	
4.1 Чтение памяти настроек и параметров (команда 0F01)	5
4.2 Чтение архива данных (команда 0F03)	5
4.3 Чтение мгновенных значений (команда 0C01h)	6
4.4 Чтение/запись часов реального времени (команды 0F02h и 0182h)	7
4.6 Поиск архивной записи по дате (команда 0D11)	8
5 СТРУКТУРА ДАННЫХ, ХРАНЯЩИХСЯ В ПАМЯТИ ТЕПЛОСЧЕТЧИКА	9
5.1 Карта памяти настроек и параметров теплосчетчика	9
5.2 Память часов реального времени	.15
5.3 Оперативная память	.16
5.4 Архивная память	.16
5.4.1 формат записи событий	.17
ЗАМЕЧАНИЯ ПО РАСШИФРОВКЕ АРХИВА	.18
5.5 Определение конфигурации прибора	.18
5.6 Расшифровка текущих показаний теплосчетчика	.19
5.7 Расшифровка архива	.20

1 НАСТРОЙКИ ЛИНИИ СВЯЗИ

Интерфейс	RS-232C	RS-485
Скорость обмена, бит/с	9600	9600
Сетевой адрес	1 – 240	
Старт-бит	1	
Стоп-бит	1	
Бит данных	8	
Управление потоком	нет	
Контроль чётности	нет	

2 ОБЩАЯ СТРУКТУРА ПАКЕТА ДАННЫХ

Посылка «ведущего» устройства (ПК)

Байт	Обозначение	Пример	Описание	
0	SIG	55	Признак начала пакета	
1	ADDR	01	Сетевой адрес ведомого устройства, которому адресуется пакет	
2	!ADDR	FE	Инверсное значение сетевого адреса	
3	CGRP	0F	Группа команд: 00 – команды установления связи; 0F – команды чтения памяти;	
4	CMD	02	Идентификатор команды	
5	LEN	02	Число байт посылаемых данных (040)	
			Данные (если таковые есть)	
5+LEN	CS		Контрольная сумма (дополнение до нуля)*	
Примечание: все значения чисел шестнадцатеричные.				

Ответ «ведомого» устройства (теплосчетчик, АПД)

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0F	Группа команд
4	CMD	02	Идентификатор команды
5	LEN	02	Число байт посылаемых данных
6	DATA	04	
5+LEN	CS		Контрольная сумма (дополнение до нуля)

^{*} Контрольная сумма посылаемого/принимаемого пакета рассчитывается как $CS = NOT (B_1 + B_2 + B_3 + ... + B_N)$, где $B_1 ... B_N$ - последовательность байт пакета, исключая байт контрольной суммы, NOT – операция побитного логического «HE».

3 КОМАНДЫ УСТАНОВЛЕНИЯ СВЯЗИ

3.1 Идентификация устройства (команда 0000)

Посылка «ведущего» устройства

Байт	Обозначение	Пример	Описание
0	SIG	55	Признак начала пакета
1	ADDR	01	Сетевой адрес ведомого устройства, которому адресуется пакет
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	00	Группа команд
4	CMD	00	Идентификация устройства
5	LEN	00	Число байт посылаемых данных (0)
6	CS	AB	Контрольная сумма (дополнение до нуля)

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	00	Группа команд
4	CMD	00	Идентификатор команды
5	LEN	07	Число байт посылаемых данных
6	DATA		'T'
7	DATA		'E'
8	DATA		'M'
9	DATA		
Α	DATA		'2'
В	DATA		'0'
С	DATA		·6'
D	CS		Контрольная сумма (дополнение до нуля)

4 КОМАНДЫ ЧТЕНИЯ ИЗ ПАМЯТИ

4.1 Чтение памяти настроек и параметров (команда 0F01)

Посылка «ведущего» устройства

Байт	Обозначение	Пример	Описание
0	SIG	55	Признак начала пакета
1	ADDR	01	Сетевой адрес ведомого устройства, которому адресуется пакет
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0F	Группа команд
4	CMD	01	Чтение конфигурации
5	LEN	03	Число байт посылаемых данных (3)
6	TADRH	01	Начальный адрес в памяти (старший байт)
7	TADRL	80	Начальный адрес в памяти (младший байт)
8	TLEN	40	Длина считываемого блока данных (1255 байт)
9	CS		Контрольная сумма (дополнение до нуля)

Ответ «ведомого» устройства

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0F	Группа команд
4	CMD	01	Чтение конфигурации
5	LEN	40	Число байт посылаемых данных (равно полю TLEN в посылке ведущего)
6	DATA		Данные
	DATA		
5+LEN	CS		Контрольная сумма (дополнение до нуля)

4.2 Чтение архива данных (команда 0F03)

Посылка «ведущего» устройства

Байт	Обозначение	Пример	Описание
0	SIG	55	Признак начала пакета
1	ADDR	01	Сетевой адрес ведомого устройства, которому адресуется пакет
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0F(8F#)	Группа команд
4	CMD	03	Чтение архива
5	LEN	05	Число байт посылаемых данных (5)
6	TLEN	40	Длина считываемого блока данных (1255 байт)
7	FADR3	00	Начальный адрес в памяти (старший байт)
8	FADR2	01	
9	FADR1	00	
Α	FADR0	80	Начальный адрес в памяти (младший байт)
В	CS		Контрольная сумма (дополнение до нуля)

Ответ «ведомого» устройства

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0F	Группа команд
4	CMD	03	Идентификатор команды
5	LEN	40	Число байт посылаемых данных (равно полю TLEN в посылке ведущего)
6	DATA		Данные
	DATA		
5+LEN	CS		Контрольная сумма (дополнение до нуля)

4.3 Чтение мгновенных значений (команда 0C01h)

Посылка «ведущего» устройства

Байт	Обозначение	Пример	Описание
0	SIG	55	Признак начала пакета
1	ADDR	01	Сетевой адрес ведомого устройства, кото-
'	ADDIX	0	рому адресуется пакет
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0C	Группа команд
4	CMD	01	Чтение оперативной памяти
5	LEN	03	Число байт посылаемых данных (3)
6	TADRH	01	Начальный адрес в оперативной памяти
			(старший байт)
7	TADRL	80	Начальный адрес в оперативной памяти
•			(младший байт)
8	TLEN	40	Длина считываемого блока данных (1255
0	ILLIN	7	байт)
9	CS		Контрольная сумма (дополнение до нуля)

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0C	Группа команд
4	CMD	01	Чтение оперативной памяти
5	LEN	40	Число байт посылаемых данных (равно полю TLEN в посылке ведущего)
6	DATA		Данные
	DATA		
5+LEN	CS		Контрольная сумма (дополнение до нуля)

4.4 Чтение/запись часов реального времени (команды 0F02h и 0182h)

4.5.1 Посылка «ведущего» устройства при чтении

Байт	Обозначение	Пример	Описание
0	SIG	55	Признак начала пакета
1	ADDR	01	Сетевой адрес ведомого устройства, кото-
ı	ADDR	01	рому адресуется пакет
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0F	Группа команд
4	CMD	02	Чтение регистров часов реального времени
5	LEN	02	Число байт посылаемых данных (2)
6	TADR	01	Начальный регистр
7	TLEN	6	Длина считываемого блока данных (16
,	ILEN	U	байт)
8	CS		Контрольная сумма (дополнение до нуля)

Ответ «ведомого» устройства

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0F	Группа команд
4	CMD	02	Чтение регистров часов реального времени
5	LEN	6	Число байт посылаемых данных (равно полю TLEN в посылке ведущего)
6	DATA		Данные
	DATA		
5+LEN	CS		Контрольная сумма (дополнение до нуля)

4.5.2 Посылка «ведущего» устройства при записи

Байт	Обозначение	Пример	Описание
0	SIG	55	Признак начала пакета
1	ADDR	01	Сетевой адрес ведомого устройства, которому адресуется пакет
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	01	Группа команд
4	CMD	82	Чтение регистров часов реального времени
5	LEN	08	Число байт посылаемых данных (8)
6	TADR	00	Начальный регистр
7	DATA	32	сек
8	DATA	12	Мин
9	DATA	18	Час
10	DATA	3	Дата
11	DATA	7	месяц
12	DATA	17	Год – 2017
13	DATA	1	понедельник
14	CS		Контрольная сумма (дополнение до нуля)

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	01	Группа команд
4	CMD	82	Чтение регистров часов реального времени
5	LEN	7	Число байт посылаемых данных
6	DATA		Значения регистров таймера (дата-время)
	DATA		
5+LEN	CS		Контрольная сумма (дополнение до нуля)

4.6 Поиск архивной записи по дате (команда 0D11)

Посылка «ведущего» устройства

Байт	Обозначение	Пример	Описание
0	SIG	55	Признак начала пакета
1	ADDR	01	Сетевой адрес ведомого устройства, которому адресуется пакет
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0D	Группа команд
4	CMD	11	Поиск записи
5	LEN	05	Число байт посылаемых данных (5)
6	STAT_TYPE	40	Тип архива: 0 – часовой; 1 – суточный; 2 – месячный.
7	HOUR	00	Yac (BCD)
8	DAY	01	День (BCD)
9	MONTH	00	Месяц (ВСD)
Α	YEAR	80	Год (BCD)
В	CS		Контрольная сумма (дополнение до нуля)

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0D	Группа команд
4	CMD	11	Идентификатор команды
5	LEN	2	Число байт посылаемых данных
6	NUML		Номер записи (младший байт)**
7	NUMH		Номер записи (старший байт)**
8	CS		Контрольная сумма (дополнение до нуля)

^{**}Примечание: в случае, если запись с заданной датой не найдена, в полях NUMH и NUML возвращается значение FFFFh

5 СТРУКТУРА ДАННЫХ, ХРАНЯЩИХСЯ В ПАМЯТИ ТЕПЛОСЧЕТЧИКА

5.1 Карта памяти настроек и параметров теплосчетчика

Адрес (НЕХ)	Имя	Тип	Описание	Единицы измерения				
0000	Настройки прибора, подробно см 5.1.1							
	l	Настройки с	истем, подробно см 5.1.2					
0800			Система 1					
00CD			Система 2					
011A			Система 3					
0167			Система 4					
01B4			Система 5					
0201	Система 6							
0340		Адрес	а архивных записей, см 5.1.3					
0380	Настройки измерительных каналов, см 5.1.4							
0620	Сетевые настройки, см 5.1.5							
0800	Накоп	пенные знач	нения параметров(интеграторы),	см 5.1.6				
Пантан								

Примечания:

Далее будут представлены карты памяти каждой из областей карты п 5.1. Данные доступны по команде 0F01 (п 4.2)

а) Типы данных: F – float (4 байта); L – unsigned long (4 байта); SL – signed long (4 байта); I – unsigned int (2 байта); SI – signed int (2 байта); C – Char (1 байт); BCD – число в двоично-десятичном коде.

5.1.1 Карта области настроек прибора

смещение (HEX)	Имя	Тип	Описание	Единицы измерения
0000	number	L	заводской номер прибора	
0004	systems	С	число систем	
0005	rep_date	С	отчетная дата	
0007	net_addr	C	номер прибора в сети	
000A	energy_units	С	Единицы измерения энергии 0 – ГДж 1 – Гкал 2 – МВт*ч	
000B	display_pressure	C	Отображение давления на экране 0 – нет 1 - да	
0014	filter	С	Фильтрация каналов Т и Р 0 – нет 1 - да	
0016	T_sens_type		Тип датчиков Т 0 — 1.3910 1 — 1.3850	
0017	protocol_type	C	Используемый протокол: 0 – проприетарный 1 – ModBus	
001B	D_in_type	С	Тип входов признаков 0 – Дискретные 1 – Цифровые	
001C	USB_role	С	Режим работы USB 0 – device (VCOM) 1 – host (FLASH, USB-modem)	
001E	Light_ena	С	Разрешение включения под- светки индикатора при питании от батареи 0 – нет 1 – да	

5.1.2 Карта настройки системы

смещение (НЕХ)	Имя	Тип	Описание	Единицы измерения
0000	sys_type	С	тип системы (00F) возможные значения типов систем: 00 - Расходомер V 01 - Расходомер М 02 - Магистраль 03 - Подача 04 - Обратка 05 - Холод 06 - Тупиковая ГВС 07 - Подпитка НСО 08 - Подпитка источника 09 - Тепло/Холод 0A - Подача + Р 0B - Открытая 0C - ГВС с рециркуляцией 0D - Источник 0E - Р-подача+Подпитка 0F - НСО 10 - Температура	
0001	G_prog	C[4]	Расход по каналам: 0 – измеряемый 1-100 в % от Gмакс.	%
0005	G_chan	C[4]	Используемые системой ка- налы расхода	
0009	T_prog	C[4]	Температура по каналам: 0 – измеряемая 1-151 прогр. (t-1)	°C
000D	T_chan	C[4]	Используемые системой каналы температуры	
0011	P_prog	C[4]	Давление по каналам: 0 – измеряемое 1-25 - прогр.	0.1 МПа
0015	P_chan	C[4]	Используемые системой ка- налы давления	
0019	UseDgv	С	Использование договорных значений: 0 - нет 1 – да	
0022	P_dgv	C[4]	Договорные значения каналов давления: 1- 25	0.1 МПа
0026	StopCount	С	Останов счета: 0 - нет 1 – останов по G↑ G↓ dT 2 – dT	
0027	deltaT	С	Минимальная разница темпе- ратур	°C
0028	Open_s_Q	С	переключатель формулы от- крытой системы:	

смещение (HEX)	Имя	Тип	Описание	Единицы измерения
			0 – Q = Q1 + Q2 1 – Q = Q1	
0029	RevMode	С	Режим реверса в схеме "От- крытая": 0 - Основной 1 – Лето1 (G1 = 0) 2 – Лето2 (G2 = 0) 3 – Авто	
002A	sys_enabled	O	Работа системы: 0 - запрещена 1 – разрешена	
002B	GVS_C_sens	С	Схема установки датчиков потока для схемы «ГВС цир-куляция»: 0 – Циркуляция - ХВ 1 – ГВ - Циркуляция	
002C	th_G_sens_place	C	Размещение датчик потока для схемы «Холод»: 0 - Подача 1 – Обратка	
002C	th_G_sens_place	С	Размещение датчик потока для схемы «Холод»: 0 - Подача 1 – Обратка	
002E	Tc_winter	С	Температура Тх для зимнего периода	
002F	Tc_summer	С	Температура Тх для летнего периода	
0030	show_energy	С	Показывать энергию для си- стемы ГВС-циркуляция	

5.1.3 Адреса архивных записей

смещение (HEX)	Имя	Тип	Описание
0000	next_h_rec	L	Адрес следующей записи часового архива
0004	next_day_rec	L	- / - суточного архива
008	next_mon_rec	L	- / - месячного архива
00C	next_sys_ev	L[6]	- / - события по системе
0024	next dev ev	L	- / - события по прибору

- Для получения адреса последней сделанной прибором записи следует от значения в указанных ячейках отнять размер соответствующей записи (512 для часовых/суточных/месячных записей) и 16 байт для событий.
- Диапазон значений адресов для каждого типа (часовой, суточный и т.д.) см п 5.4.

5.1.4 Карта настроек измерительных каналов

смещение (HEX)	Имя	Тип	Описание	Единицы измерения
0000	du_ind	I[6]	Диаметр условного прохода по каналам	
000C	g_max	F[6]	Максимальный расход в канале	м ³ /ч
0024	g_max_prcnt	C[6]	Значение максимальной уставки по расходу в процентах от g_max . Значение G_{max} рассчитывается как $G_{max} = g_max * g_max_prent / 100$	%
002A	g_min_prent	I[6]	Значение минимальной уставки по расходу в процентах от g_max . Значение G_{min} рассчитывается как $G_{min} = g_max * g_min_prcnt / 100$	%
0036	Kv	L[6]	Вес импульса по каналам	0.001 л/имп
004E	did_emp_cntrl	C[6]	Разрешение детектирования ПТ в каналах расхода по ДИД	
003D	did_p_max	C[6]	Максимальное значение давления по каналам 1- 25	0.1 МПа
0041	did_p_dgv	C[6]	Договорные значения давления по каналам 1- 25	0.1 МПа
0047	attrib	C[6]	Настройки входов признаков 0 – Нет признака 1 – Реверс 2 – Пустая труба 3 – Техническая неисправность 4 – Питание отсутствует 5 – Все признаки	

5.1.5 Сетевые настройки

смещение (HEX)	Имя	Тип	Описание	Единицы измерения
0000	MAC	C[8]	МАС адрес прибора	
8000	IP	C[4]	IP адрес прибора	
000C	netmask	C[4]	Маска подсети	
0010	gateway	C[4]	Шлюз	
0014	listen_port	I	Порт для подключения к при- бору	
001A	srv_port	I	Порт для подключения к серверу	
001C	DHCP_ena	С	Разрешение работы DHCP клиента 0 – нет 1 – да	
0024	exch_interval	L	Интервал обмена данными с сервером	
002C	srv_addr	C[32]	Доменное имя сервера	
004C	ppp_auth	С	Тип аутентификации:	

смещение (HEX)	Имя	Тип	Описание	Единицы измерения
			0 – нет	
			1 – любой 2 – РАР	
			3 – СНАР (по умолчанию)	
	ppp_APN	C[32]	Имя точки доступа моб. оператора	
	ppp_DialNum	C[16]	Номер для выхода в сеть *99# по умолчанию	
	ppp_Login	C[16]	Логин для подключения к сети	
	ppp_Pass	C[16]	Пароль для подключения к сети	

5.1.6 Карта накопленных значений параметров (интеграторы)

Смещение (HEX)	Имя	Тип	Описание	Единицы измерения
0000	tek_dat	UTC32	Время и дата записи	сек
0004	prev_dat	UTC	Время и дата предыдущей записи	сек
0008	h_IntV	L[6]	Целая часть интеграторов объема по каналам	м ³
0020	h_IntM	L[6]	Целая часть интеграторов массы по каналам	Т
0038	h_IntQ	L[6]	Целая часть интеграторов энергии по системам	Гкал
0050	h_IntQ_err	L[6]	Целая часть интеграторов энергии в ошибках G>Gmax, G <gmin *<="" td="" по="" системам=""><td>Гкал</td></gmin>	Гкал
0068	I_IntV	F[6]	Дробная часть интеграторов объема по каналам	M^3
0080	I_IntM	F[6]	Дробная часть интеграторов массы по каналам	Т
0098	I_IntQ	F[6]	Дробная часть интеграторов энергии по системам	Гкал
00B0	I_IntQ_err	F[6]	Дробная часть интеграторов энергии в ошибках G>Gmax, G <gmin *<="" td="" по="" системам=""><td>Гкал</td></gmin>	Гкал
00C8	h_Q_all	SL	Целая часть суммы интеграторов энергии	
00CC	I_Q_all	F	Дробная часть суммы интеграторов энергии	
00D0	h_Q_all_err	SL	Целая часть суммы интеграторов энергии	
00D4	I_Q_all_err	F	Дробная часть суммы интеграторов энергии	
00D8	TRab	L	время работы прибора при поданном питании	сек
00DC	Toffline	L	время отсутствия электро-	сек

Смещение (HEX)	Р МЯ	Тип	Описание	Единицы измерения
			питания	
00E0	TNar	L[6]	время работы систем без ошибок	сек
00F8	Tmin	L[6]	расход меньше минималь- ного	сек
0110	Tmax	L[6]	расход больше макси- мального	сек
0128	Tdt	L[6]	разность температур меньше минимальной	сек
0140	Ttn	L[6]	техническая неисправ- ность	сек
0158	Trev	L[6]	Реверс в системе	сек
0170	Tpt	L[6]	Отсутствие теплоносителя	сек
0188	tekerr	C[6]	Ошибки по системам	
018E	teherr	I[6]	Ошибки по системам	
019A	t	I[6][3]	Температура по системам	°C/100
01BE	р	C[6][3]	Давление по системам	MΠa/100
01D0	Rshv_max	I[6]	Максимальный расход по каналам	0.1 м ³ /ч
01DC	proc_temp	SI	Температура внутри кор- пуса	°C/100
01DE	rsm_Vbat	I[6]	Напряжение питания рас- ходомеров, подключенных по цифровому каналу	V/1000
		T		
01FF	check	С	Контрольная сумма **	

^{*} для системы Тепло/Холод здесь соответствующий интегратор холода

5.2 Память часов реального времени

Адрес (HEX)	Имя	Тип	Описание	Единицы измерения
0000	t_ss	С	Текущее время (секунды)	
0001	t_mm	С	Текущее время (минуты)	
0002	t_hh	С	Текущее время (часы)	
0003	t_dm	С	Текущая дата (день)	
0004	t_my	С	Текущая дата (месяц)	
0005	t_yy	С	Текущая дата (год) - 2000	
0006	t dw	С	Текущий день недели, 0-Вс6-Сб	

Данные доступны по команде 0F02 (чтение) 0F82 (запись) см п 4.5

^{**} Контрольная сумма записи статистики рассчитывается как инверсия суммы всех байт записи по модулю 8, кроме байта контрольной суммы

5.3 Оперативная память

В оперативной памяти хранится ряд текущих параметров по системам, начиная с адреса 0h (6 структуры SysPar, описанных ниже).

Структура SysPar

Смещение (HEX)	Имя	Тип	Описание	Единицы измерения
0000	tmp	F[4]	Текущие значения темпера- туры по каналам	°C
0010	prs	F[4]	Текущие значения давления по каналам	Мпа
0020	ro	F[4]	Текущие значения плотности теплоносителя	
0030	hent	F[4]	Текущие значения энталь- пии	
0040	rshv	F[4]	Текущие значения объемно- го расхода	м ³ /ч
0050	rshm	F[4]	Текущие значения массово- го расхода	т/ч
0060	pwr	F[4]	Текущие значения мощности	Гкал/ч
0800	tekerr	С	Ошибки	
0081	teherr	ĺ	Технеисправности	

Данные доступны по команде 0С01 см п 4.3

5.4 Архивная память

Архив прибора хранится в энергонезависимой памяти объемом 1Мб и состоит из однотипных записей, приведенных в п 5.1.5.

Записи распределены в адресном пространстве памяти следующим образом:

Адресное пространство	Описание
00000000 - 000C7FFF	Часовые записи (1600)
000C8000 - 0012BFFF	Суточные записи (800)
0012C000 - 001337FF	Записи на отчетную дату (60)
00133800 - 0013D43F	Записи событий по системе 1
0013D440 - 0013707F	Записи событий по системе 2
00147080 - 00150CBF	Записи событий по системе 3
00150CC0 - 0015A8FF	Записи событий по системе 4
0015A900 - 0016453F	Записи событий по системе 5
00164540 - 0016E17F	Записи событий по системе 6
0016E180 - 00172C7F	Записи событий по прибору

5.4.1 формат записи событий

Смещение (HEX)	Имя	Тип	Описание	Единицы измерения
0000	tek_dat	UTC32	Время и дата записи	сек
0004	Ev_prev	L	Предыдущее состояние	
8000	Ev_new	Ш	Текущее состояние	
000F	check	С	Контрольная сумма **	

^{**} Контрольная сумма записи статистики рассчитывается как простая сумма всех байт записи, кроме байта контрольной суммы

5.4.2 расшифровка событий по системе

Битовая маска	Описание
0x0000001	Обрыв/КЗ первого датчика температуры
0x00000002	Обрыв/КЗ второго датчика температуры
0x0000001	Обрыв/КЗ третьего датчика температуры
0x00000008	Ошибка dT
0x00000010	Расход меньше уставки Gmin в первом канале расхода системы
0x00000020	Расход меньше уставки Gmin во втором канале расхода системы
0x00000040	Расход меньше уставки Gmin в третьем канале расхода системы
0x00000080	Расход больше уставки Gmax в первом канале расхода системы
0x00000100	Расход меньше уставки Gmax во втором канале расхода системы
0x00000200	Расход меньше уставки Gmax в третьем канале расхода системы
0x00000400	Отсутствует теплоноситель в первом канале расхода системы
0x00000800	Отсутствует теплоноситель во втором канале расхода системы
0x00001000	Отсутствует теплоноситель в третьем канале расхода системы
0x00002000	Тех. неисправность первого канала расхода системы
0x00004000	Тех. неисправность второго канала расхода системы
0x00008000	Тех. неисправность третьего канала расхода системы
0x00010000	Реверс в первом канале расхода системы
0x00020000	Реверс во втором канале расхода системы
0x00040000	Реверс в третьем канале расхода системы
0x00080000	Обрыв/КЗ первого датчика давления
0x00100000	Обрыв/КЗ второго датчика давления
0x00200000	Обрыв/КЗ третьего датчика давления
0x00400000	Ошибка питания в первом канале расхода
0x00800000	Ошибка питания во втором канале расхода
0x01000000	Ошибка питания в третьем канале расхода

Возникновение события определяется как взведенный бит в поле Ev_new и сброшенный бит на той же позиции в поле Ev_prev .

Пропадание события определяется как сброшенный бит в поле Ev new и взведенный бит на той же позиции в поле Ev prev.

5.4.3 расшифровка событий по прибору

Битовая маска	Описание
0x0000001	Пропадание электропитания прибора
0x00000002	Возобновление электропитания прибора
0x00000004	Низкое напряжение встроенной батареи
0x00000008	Встроенная батарея разряжена
0x00000010	Калибровка каналов Т, Р
0x00000100	Изменение общих настроек
0x00000200	Изменение настроек измерительных каналов
0x00000400	Изменение настроек Системы 1
0x00000800	Изменение настроек Системы 2
0x00001000	Изменение настроек Системы 3
0x00002000	Изменение настроек Системы 4
0x00004000	Изменение настроек Системы 5
0x00008000	Изменение настроек Системы 6
0x00010000	Изменение даты/времени
0x00020000	Изменение настроек интерфейса Ethernet

Возникновение и пропадание события определяется аналогично п 5.4.2

ЗАМЕЧАНИЯ ПО РАСШИФРОВКЕ АРХИВА

5.5 Определение конфигурации прибора

- 5.5.1 Число систем байт systems по адресу 0004 из памяти настроек прибора (п.5.1.1), может принимать значения от 1 до 4;
- 5.5.2 Тип каждой из систем определяется при помощи значений sys_type из структур настроек системы(SysCon) (хранятся в памяти настроек начиная с адреса 0080), расшифровка значений дана в таблице п 5.1.2;
- 5.5.3 Используемые в каждой из систем каналы расхода, давления и температуры определяются путем анализа соответствующих элементов массива структур SysCon (массивы Gchan, Tchan и Pchan). Количество каналов расхода (G), давления (P) и температуры (T) для различных типов систем приведено в таблице:

Тип системы (НЕХ)	G	Р	Т
0	1	0	0
1	1	1	1
2	1	1	1
3	1	2	2
4	1	2	2

5	1	2	2
6	1	2	2
7	1	2	2
8	1	2	2
9	2	2	2
A	2	2	2
В	2	3	3
С	2	3	3
D	3	3	3
E	3	2	2
F	3	3	3

<u>Пример:</u> значения массива Gchan 00 01 XX XX (XX - любое значение) для системы «Открытая» (код 0Ah) означают, что используются 1-й и 2-й каналы расхода;

- 5.5.4 Значения G_{max} (метрологические) хранятся **поканально**, т.е. в качестве индекса массива g_max необходимо брать не номер системы, а номер соответствующего канала расхода в системе;
- 5.5.5 Установленные в приборе значения $G_{\text{min.yct.}}$ и $G_{\text{max yct.}}$ вычисляются следующим образом:
 - $G_{\text{max.yct.}}$ = G_{max}^* G_{max}^* 0.01, где G_{max}^* значение элемента массива g_{pcnt} так для соответствующего канала расхода

и

- $G_{\text{min.ycr.}} = G_{\text{max}} * G_{\text{min}} * 0.0005$, где $G_{\text{min}} 3$ начение элемента массива g_{pont} min для соответствующего канала расхода;
- 5.5.6 Значения диаметра условного прохода d_y <u>по каналам</u> хранятся в массиве diam; для импульсных каналов 3 и 4 значения d_y берутся напрямую из элементов массива diam; для частотных каналов 1 и 2 значения определяются следующим образом:

Значение соответствующе- го элемента массива diam	Фактическое значение d _y , мм
0	15
1	25
2	32
3	40
4	50
5	80
6	100
7	150

5.6 Расшифровка текущих показаний теплосчетчика

5.6.1 Дата и время хранятся в памяти часов реального времени в 00 (секунды) и заканчивая адресом 06 (день недели):

<u>Пример:</u> цепочка десятичных значений 33 15 14 02 03 17 04 расшифровывается как 14 ч. 15 мин. 33 сек. 2 марта 2017 года, четверг;

- 5.6.2 Значения интеграторов накопленной энергии Q, массы M и объема V рассчитываются как:
 - $Q = Q_H + Q_L$, где Q_H и Q_L значения элементов массивов h_intQ и l_intQ структуры SysInt для соответствующей системы;
 - $M = M_H + M_L$, где M_H и M_L значения элементов массивов h_intM и l_intM структуры SysInt для соответствующего канала;
 - $V = V_H + V_L$, где V_H и V_L значения элементов массивов h_intV и l_intV структуры SysInt для соответствующего канала;
- 5.6.3 Значения температур и давлений для соответствующих каналов по системам берутся из структур SysPar из оперативной памяти.
- 5.6.4 Интеграторы времени наработки (в секундах), а также времен работы прибора в нештатном режиме хранятся <u>по системам</u> в массивах TNar, Tmin, Tmax, Tdt, Ttn структуры SysInt; интегратор общего времени работы прибора при включенном питании хранится в переменной TRab.

5.7 Расшифровка архива

5.7.1 Дата и время создания записи хранятся в UNIX timestamp, UTC, начиная со смещения 0000

Пример: 1507813753 – 12 октября 2017г. 13:09:13 GMT;

- 5.7.2 Дата и время, за которые производится запись, хранятся начиная со смещения 0004
- 5.7.3 Значения интеграторов накопленной энергии Q рассчитываются следующим образом:

$$Q = Q_H + Q_L,$$
 где Q_H и Q_L - значения элементов массивов h_i intQ и l_i intQ для соответствующего канала.;

- 5.7.4 Значения интеграторов массы и объема вычисляются аналогично п. 5.2.3;
- 5.7.5 Значения температур и давлений для соответствующих <u>каналов</u> берутся из массивов t и р соответственно;
- 5.7.6 Значения интеграторов времен получают аналогично п. 5.2.5;
- 5.7.7 Ошибки <u>по системам</u> за текущий час получают путем анализа значений tekerr и teherr (расшифровка значений отдельных битов приведена в таблице).

Расшифровка бит tekerr

Бит	Ошибка
0	G1 < min
1	G2 < min
2	G3 < min

3	G1 > max
4	G2 > max
5	G3 > max
6	dt1 < min
7	dt2 < min

Расшифровка бит teherr

Бит	Ошибка
0	тех. неиспр канала расхода 1
1	тех. неиспр канала расхода 2
2	тех. неиспр канала расхода 3
3	тех. неиспр канала температуры 1
4	тех. неиспр канала температуры 2
5	тех. неиспр канала температуры 3
6	тех. неиспр канала давления 1
7	тех. неиспр канала давления 2
8	тех. неиспр канала давления 3
9	Отсутствует теплоноситель в ка-
	нале расхода 1
10	Отсутствует теплоноситель в ка-
	нале расхода 2
11	Отсутствует теплоноситель в ка-
	нале расхода 3
12	Ошибка возбуждения канала1
13	Ошибка возбуждения канала2
14	-
15	выключение питания

СООО «АРВАС» Республика Беларусь 223035 Минский район, п. Ратомка, ул. Парковая, 10 секретарь: тел./факс (017) 502-11-11, 502-11-55 отдел продаж: тел. (017) 502-11-89, тел./факс (017) 502-22-31

сервисный центр: г. Минск, ул. Матусевича, 33

диспетчер: тел. (017) 363-21-08 ремонт: тел. (017) 202-60-58

e-mail: arvas@open.by, web: http://www.arvas.by